1.介绍
本文将详细介绍一个结合了Shift-Transformer模块的UNet网络实现,这是一种将传统卷积神经网络与自注意力机制相结合的创新架构。
网络概述
这个网络是基于经典的UNet架构,但在瓶颈层(bottleneck)加入了Shift-Transformer模块,旨在结合CNN的局部特征提取能力和Transformer的全局建模能力。
核心组件解析
1. ShiftTransformerBlock
ShiftTransformerBlock
是整个网络中最具创新性的模块,它结合了卷积操作和自注意力机制:
class ShiftTransformerBlock(nn.Module):
def __init__(self, dim, num_heads=4, shift_size=5, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.shift_size &#