UNet 改进(25):结合Shift-Transformer结构

1.介绍

本文将详细介绍一个结合了Shift-Transformer模块的UNet网络实现,这是一种将传统卷积神经网络与自注意力机制相结合的创新架构。

网络概述

这个网络是基于经典的UNet架构,但在瓶颈层(bottleneck)加入了Shift-Transformer模块,旨在结合CNN的局部特征提取能力和Transformer的全局建模能力。

核心组件解析

1. ShiftTransformerBlock

ShiftTransformerBlock是整个网络中最具创新性的模块,它结合了卷积操作和自注意力机制:

class ShiftTransformerBlock(nn.Module):
    def __init__(self, dim, num_heads=4, shift_size=5, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim)
        self.shift_size &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值