UNet 改进(25):结合Shift-Transformer结构

1.介绍

本文将详细介绍一个结合了Shift-Transformer模块的UNet网络实现,这是一种将传统卷积神经网络与自注意力机制相结合的创新架构。

网络概述

这个网络是基于经典的UNet架构,但在瓶颈层(bottleneck)加入了Shift-Transformer模块,旨在结合CNN的局部特征提取能力和Transformer的全局建模能力。

核心组件解析

1. ShiftTransformerBlock

ShiftTransformerBlock是整个网络中最具创新性的模块,它结合了卷积操作和自注意力机制:

class ShiftTransformerBlock(nn.Module):
    def __init__(self, dim, num_heads=4, shift_size=5, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim)
        self.shift_size &#
### Swin Transformer 结合 UNet 的实现方法 #### 方法概述 Swin UNetR 是一种创新架构,它将经典的 U-Net 编码器-解码器结构与先进的 Swin Transformer 技术相结合。这种组合不仅继承了传统卷积神经网络的优点,还引入了自注意力机制来捕捉更广泛的特征表示。 #### 架构设计 编码阶段采用多个堆叠的 Swin Transformer Block 来替代传统的 CNN 层次[^1]。这些 Blocks 能够有效地提取多尺度的空间信息并建立远距离像素间的关联关系。具体来说: ```python class SwinBlock(nn.Module): def __init__(self, dim, input_resolution, num_heads=8, window_size=7, shift_size=0): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = WindowAttention( dim, window_size=(window_size, window_size), num_heads=num_heads, qkv_bias=True, attn_drop=0., proj_drop=0. ) def forward(self, x): shortcut = x x = self.norm1(x) x = self.attn(x) return shortcut + x ``` 在解码部分,则利用跨连接(skip connection)从对应的编码层传递高维语义特征给相应的解码单元,从而更好地保留细节信息[^2]。 #### 应用场景 该混合模型特别适合于那些需要精确分割边界以及保持局部纹理的任务,比如医疗影像分析中的病灶检测、遥感图像分类等。此外,在自然场景下执行复杂的视觉识别工作也表现出色,例如自动驾驶车辆感知周围环境时所需的物体检测和实例分割任务。 对于特定领域如低光条件下拍摄的照片增强、压缩失真修复或是老旧相片翻新等方面同样具有显著效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值