ResNet改进(41):与FPN结合的图像分类模型

1.介绍

概述

本文将详细解析一个结合了ResNet34和特征金字塔网络(FPN)的自定义图像分类模型。

该模型提供了两种工作模式:标准ResNet模式和FPN增强模式,能够灵活适应不同的图像分类需求。

模型架构

1. FPN (Feature Pyramid Network) 模块

FPN是一种用于构建多尺度特征表示的网络结构,特别适合处理不同尺寸的目标检测任务。

在我们的实现中,FPN被用于增强图像分类任务的性能。

class FPN(nn.Module):
    def __init__(self, in_channels_list, out_channels=256):
        super(FPN, self).__init__()
        self.out_channels = out_channels
        
        # Lateral layers
        self.lateral_convs = nn.ModuleList()
        for in_channels in in_ch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值