【粉丝福利社】LangChain核心技术与LLM项目实践

🌟【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】🌟

📣开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主!

👉 江湖人称"愚公搬代码",用七年如一日的精神深耕技术领域,以"挖山不止"的毅力为开发者们搬开知识道路上的重重阻碍!

💎【行业认证·权威头衔】
✔ 华为云天团核心成员:特约编辑/云享专家/开发者专家/产品云测专家
✔ 开发者社区全满贯:CSDN博客&商业化双料专家/阿里云签约作者/腾讯云内容共创官/掘金&亚马逊&51CTO顶级博主
✔ 技术生态共建先锋:横跨鸿蒙、云计算、AI等前沿领域的技术布道者

🏆【荣誉殿堂】
🎖 连续三年蝉联"华为云十佳博主"(2022-2024)
🎖 双冠加冕CSDN"年度博客之星TOP2"(2022&2023)
🎖 十余个技术社区年度杰出贡献奖得主

📚【知识宝库】
覆盖全栈技术矩阵:
◾ 编程语言:.NET/Java/Python/Go/Node…
◾ 移动生态:HarmonyOS/iOS/Android/小程序
◾ 前沿领域:物联网/网络安全/大数据/AI/元宇宙
◾ 游戏开发:Unity3D引擎深度解析
每日更新硬核教程+实战案例,助你打通技术任督二脉!

💌【特别邀请】
正在构建技术人脉圈的你:
👍 如果这篇推文让你收获满满,点击"在看"传递技术火炬
💬 在评论区留下你最想学习的技术方向
⭐ 点击"收藏"建立你的私人知识库
🔔 关注公众号获取独家技术内参
✨与其仰望大神,不如成为大神!关注"愚公搬代码",让坚持的力量带你穿越技术迷雾,见证从量变到质变的奇迹!✨ |


🚀前言

在人工智能和自然语言处理迅速发展的背景下,大语言模型(LLM)已成为业界不可或缺的工具。它不仅提升了信息处理能力,还为智能应用开发提供了坚实的技术基础。LangChain作为LLM应用的重要框架,使开发者得以高效地集成和运用这些强大模型,将自然语言处理技术落地到实际业务场景中。

🚀一、LangChain核心技术与LLM项目实践

本文送出的书籍是这本:

在这里插入图片描述

🔎1.编辑推荐

在人工智能技术日新月异的今天,大语言模型的应用已成为推动企业智能化转型的关键力量。而如何在这片充满机遇与挑战的领域中快速上手并深入掌握核心技术,成为众多开发者、研究人员和学生共同关注的焦点。在此,我们向您隆重推荐这本《Langchain核心技术与LLM项目实践》。

1.全面系统,零基础进阶。

《Langchain核心技术与LLM项目实践》以零基础为起点,精心规划了从基础理论到企业级项目实践的完整学习路径。全书12章内容,犹如一座精心搭建的知识阶梯,层层递进,引领读者稳步从理论学习迈向项目实战的殿堂。无论您是对LangChain和大语言模型应用初涉猎奇的新手,还是希望进一步深化理解、拓展技能的专业人士,都能在本书中找到契合自身需求的知识宝藏。

2.夯实基础,筑牢理论根基。

第1章深入浅出地介绍大语言模型的基本概念,以及LangChain的独特优势与广泛的应用场景,为您的学习之旅奠定扎实的理论基础。第2章细致讲解开发前的准备工作,涵盖API密钥的创建与管理,以及开发工具链的搭建等关键要点,确保您在正式编码前,对必要的环境与配置了然于胸,为后续的实践操作做好充分准备。

3.核心剖析,深度掌握技巧。

从第3章至第6章,《Langchain核心技术与LLM项目实践》逐步揭开LangChain的神秘面纱,深入剖析其核心组件与功能模块。通过丰富详实的代码示例,您将直观地理解并熟练掌握模型导入、提示词工程、任务链设计和内存模块等重要内容。在提示词工程部分,您将学会如何巧妙构建和优化Prompt模板,从而显著提升模型输出的准确性和相关性;而在任务链设计环节,多层链式任务的实战示例将助力您轻松应对复杂应用需求的构建与调试挑战。

4.高级进阶,探索前沿技术

书中的第7章聚焦于LangChain的表达式语言和并行处理技巧,教您运用简洁高效的语法提升数据处理效率。第8章则深入探讨Agent系统的类型及其多任务处理机制,帮助您实现任务的智能化和自动化。第9章详细讲解回调机制,展示如何自定义回调处理程序,并通过回调函数实时监控任务,使系统的灵活性和可控性得到质的提升。

5.集成优化,打造企业级方案。

第10章深入模块化开发与系统集成领域,介绍LangChain的模型I/O及数据检索技术,为企业级应用的开发与维护提供实用且具有前瞻性的指导。第11章则聚焦LangChain在企业级应用中的深度开发与技术优化,结合实际应用场景,深入探讨性能优化、任务链设计和复杂查询处理等高级技术,助力开发者打造出高效、可靠的企业级解决方案。

6.实战落地,见证知识转化。

《Langchain核心技术与LLM项目实践》的点睛之笔在于第12章,它将前11章的知识点融会贯通,带领读者逐步实现一个完整的企业级智能问答系统。从需求分析、架构设计到代码实现的每一个环节,都详细展示LangChain在企业级应用中的实际落地过程。通过这一实战案例,读者能够身临其境般地体验LangChain各种功能模块的强大魅力,深刻理解如何将其灵活应用于多样化的企业业务需求中。

7.目标明确,助力职业发展。

《Langchain核心技术与LLM项目实践》的目标不仅仅是帮助读者掌握LangChain的基本使用方法,更致力于引导读者深入探究其内部机制和高级功能。无论是开发环境的搭建、模型的优化、并发处理,还是回调机制的监控与调试,书中均配备了详细的代码示例和丰富的项目实践经验。这些宝贵的知识财富将如同一盏明灯,照亮您在人工智能领域的探索之路,助力您在未来的项目实践中将所学知识转化为实用技能,为企业智能应用开发贡献自己的力量。

如果您渴望在大语言模型和LangChain的应用领域深耕细作,那么这本《Langchain核心技术与LLM项目实践》绝对是您不容错过的绝佳选择。它将陪伴您开启一段充满挑战与机遇的学习之旅,助您在人工智能的广阔天地中展翅高飞。

🔎2.内容简介

《LangChain核心技术与LLM项目实践》全面系统地介绍了LangChain的主要功能模块及具体应用,深入探讨了LangChain在企业应用实践中的深度开发、技术优化及其核心技术。《LangChain核心技术与LLM项目实践》共12章,从大语言模型的基础知识入手,涵盖任务链的设计、内存模块的管理、表达式语言的使用、Agent系统的实现、回调机制、模型I/O与数据检索等方面的内容,并通过代码示例和应用场景,逐步引导读者掌握模型优化、并发处理和多级任务链设计等高级技术,最后,从需求分析、架构设计到代码实现,详细展示了如何运用LangChain技术开发一个企业级智能问答系统,帮助开发者打造高效、可靠的企业级解决方案。

《LangChain核心技术与LLM项目实践》从入门到高级,聚焦于前沿技术与落地实践,适合大模型及LangChain开发人员、高校学生以及对LangChain开发感兴趣的人员和研究人员阅读,也适合作为培训机构和高校相关专业的教学用书。

🔎3.作者简介

凌峰,博士,就职于某985高校,长期从事机器学习、人工智能、计算机视觉与大模型领域的研发与教学,在模型优化、训练加速、数据驱动算法开发等方面有深刻见解,参与并主导多项相关科研项目。

🔎4.产品特色

在这里插入图片描述

🔎5.目录

目 录

第 1 章 大语言模型与LangChain 1

1.1 大语言模型基本原理 1

1.1.1 语言模型的构建:从N-grams到深度学习 1

1.1.2 Transformer架构的崛起:自注意力机制解析 5

1.1.3 预训练与微调:如何提升模型性能 9

1.2 LangChain基本原理与开发流程 10

1.2.1 LangChain的核心组件:理解任务链与内存模块 10

1.2.2 LangChain开发流程概述 15

1.2.3 如何快速上手LangChain开发 17

1.3 本章小结 21

1.4 思考题 222 章 LangChain开发前的准备 23

2.1 创建OpenAI API密钥 23

2.1.1 注册与账户配置 23

2.1.2 生成和管理API密钥 26

2.1.3 设置访问权限与安全性 30

2.2 构建Anaconda+PyCharm开发工具链 31

2.2.1 安装与配置Anaconda环境 32

2.2.2 PyCharm集成Anaconda环境 36

2.2.3 包管理与环境管理 39

2.3 初探LangChain依赖库 44

2.3.1 LangChain核心依赖库概览 44

2.3.2 openai库的安装与配置 47

2.3.3 其他辅助工具与扩展包 49

2.4 本章小结 53

2.5 思考题 533 章 模型、模型类与缓存 54

3.1 关于模型 54

3.1.1 模型的定义与应用 55

3.1.2 语言模型的工作原理 60

3.2 Chat类、LLM类模型简介 62

3.2.1 Chat类模型概述 63

3.2.2 LLM类模型概述 65

3.3 基于OpenAI API的初步开发 68

3.3.1 OpenAI API调用基础 68

3.3.2 完成基本文本生成任务 71

3.4 自定义LangChain Model类 72

3.4.1 LangChain Model类的构建基础 73

3.4.2 模型参数的自定义与调优 75

3.5 LangChain与缓存 78

3.5.1 缓存的作用与类型 78

3.5.2 内存缓存的使用 79

3.5.3 文件缓存与持久化管理 82

3.5.4 Redis缓存的集成与优化 84

3.6 本章小结 89

3.7 思考题 894 章 提示词工程 91

4.1 提示词的定义与提示词模板 91

4.1.1 理解提示词在模型中的核心角色 91

4.1.2 构建提示词模板:实现灵活多样的提示结构 94

4.2 动态提示词生成技术 96

4.2.1 基于用户输入的提示词自适应生成 97

4.2.2 动态提示词生成 100

4.3 插槽填充与链式提示 103

4.3.1 插槽填充技术:快速实现变量插入的提示词模板 104

4.3.2 链式提示词:通过分步骤生成复杂内容 107

4.4 多轮对话提示词 111

4.4.1 维护连续对话的提示词设计 111

4.4.2 构建连贯自然的多轮交互 114

4.5 嵌套提示词与少样本提示词 118

4.5.1 分层级处理复杂任务的多级提示词 118

4.5.2 Few-shot提示词:通过示例提升生成效果的准确性 121

4.6 本章小结 126

4.7 思考题 1265 章 核心组件1:链 128

5.1 LLM链 128

5.1.1 LLM链的基本工作流程和参数设置 129

5.1.2 如何在LLM链中嵌入提示词模板和预处理逻辑 131

5.2 序列链 134

5.2.1 序列链的构建与分层调用 135

5.2.2 在序列链中连接多个LLM和工具模块 137

5.3 路由链 141

5.3.1 根据输入内容动态选择链路径 141

5.3.2 设置不同的模型和任务路径以适应复杂需求 145

5.4 文档链 148

5.4.1 Stuff链与Refine链的应用场景和适用文档类型 149

5.4.2 Map-Reduce链与Map-Rerank链的文档处理策略 152

5.5 本章小结 156

5.6 思考题 1566 章 核心组件2:内存模块 158

6.1 聊天消息记忆 158

6.1.1 聊天消息存储机制:保障对话连续性 158

6.1.2 动态消息记忆策略的设计与实现 161

6.2 会话缓冲区与会话缓冲窗口 165

6.2.1 会话缓冲区的配置与应用场景 165

6.2.2 会话缓冲窗口的实现 168

6.3 会话摘要与支持向量存储 171

6.3.1 长会话摘要的生成与更新 172

6.3.2 使用向量存储实现会话内容的高效检索 174

6.4 使用Postgres与Redis存储聊天消息记录 177

6.4.1 基于Postgres的持久化消息存储方案 178

6.4.2 Redis缓存技术在消息快速存取中的应用 182

6.5 本章小结 186

6.6 思考题 1867 章 LangChain与表达式语言 188

7.1 LCEL初探与流式支持 188

7.1.1 LangChian表达式语言初探 188

7.1.2 LCEL流式处理实现 190

7.2 LCEL并行执行优化 193

7.2.1 多任务并行执行策略 193

7.2.2 LCEL并行执行 198

7.3 回退机制的设计与实现 201

7.4 LCEL与LangSmith集成 205

7.4.1 LangSmith入门 205

7.4.2 LangSmith的初步应用 209

7.5 本章小结 214

7.6 思考题 2148 章 核心组件3:Agents 216

8.1 何为LangChain Agent 216

8.1.1 Agent的核心概念与工作原理 216

8.1.2 LangChain中Agent的应用场景分析 218

8.1.3 自定义LLM代理 219

8.2 ReAct Agent 222

8.2.1 ReAct Agent解析 222

8.2.2 ReAct Agent的典型应用 224

8.3 Zero-shot ReAct与结构化输入ReAct 227

8.3.1 Zero-shot ReAct的原理与实现 227

8.3.2 结构化输入ReAct的使用 229

8.4 ReAct文档存储库 231

8.5 本章小结 232

8.6 思考题 2339 章 核心组件4:回调机制 234

9.1 自定义回调处理程序 234

9.1.1 创建自定义回调处理程序 234

9.1.2 自定义链的回调函数 236

9.2 多个回调处理程序 238

9.3 跟踪LangChains 242

9.3.1 链式任务的跟踪和调试方法 242

9.3.2 任务流数据的实时监控与分析 243

9.3.3 将日志记录到文件 245

9.3.4 Token计数器 246

9.4 利用Argilla进行数据整理 248

9.4.1 初步使用Argilla 248

9.4.2 Argilla辅助数据整理 250

9.5 本章小结 251

9.6 思考题 25110 章 模型I/O与检索 253

10.1 模型I/O解释器 253

10.1.1 输入预处理与输出格式化:确保模型I/O一致性 253

10.1.2 自定义输出解析器的实现与应用 256

10.2 文本嵌入模型与向量存储 262

10.2.1 文本嵌入模型 262

10.2.2 向量存储 267

10.3 本章小结 271

10.4 思考题 27211 章 LangChain深度开发 273

11.1 性能优化与并发处理 273

11.1.1 模型加速、蒸馏、FP16精度 273

11.1.2 并发处理多用户请求 278

11.2 复杂查询与多级任务链设计 281

11.3 本章小结 284

11.4 思考题 28412 章 企业级智能问答系统 286

12.1 项目概述与分析 286

12.1.1 项目概述 286

12.1.2 项目任务分析 287

12.2 模块化开发与测试 287

12.2.1 数据加载模块 288

12.2.2 嵌入生成与存储模块 290

12.2.3 提示词工程 293

12.2.4 任务链设计 296

12.2.5 Agent系统 299

12.2.6 回调机制与监控 304

12.2.7 单元测试与集成测试 307

12.3 系统集成、部署与优化 314

12.3.1 系统集成与部署 315

12.3.2 响应速度优化 321

12.4 本章小结 329

12.5 思考题 330

需要完全了解本书可以看下面:

链接🔗:地址《LangChain核心技术与LLM项目实践》

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愚公搬代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值