第27节:现代CNN架构-VGG网络

一、VGG网络概述

VGG网络是由牛津大学视觉几何组(Visual Geometry Group)在2014年提出的深度卷积神经网络架构,在当年的ImageNet大规模视觉识别挑战赛(ILSVRC)中取得了优异成绩。VGG网络以其简洁而统一的设计理念闻名,全部使用3×3的小型卷积核和2×2的最大池化层,通过不断增加深度来提升网络性能。

VGG网络的主要贡献在于证明了网络深度对于模型性能的关键作用。与之前的AlexNet相比,VGG通过使用更小的卷积核和更深的网络结构,在保持计算量合理的同时显著提高了分类准确率。VGG-16和VGG-19两种配置尤其著名,数字代表网络中具有权重层的总数(卷积层和全连接层)。

二、VGG网络架构详解

1. 基本结构特点

VGG网络最显著的特点是全部使用3×3的小型卷积核,这种设计有以下几个优势:

  • 更多的非线性变换:两个3×3卷积堆叠相当于一个5×5卷积的感受野,但使用了两次ReLU激活函数,增加了非线性表达能力。

  • 更少的参数:一个5×5卷积层的参数数量为25C²(C为通道数),而两个3×3卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值