一、VGG网络概述
VGG网络是由牛津大学视觉几何组(Visual Geometry Group)在2014年提出的深度卷积神经网络架构,在当年的ImageNet大规模视觉识别挑战赛(ILSVRC)中取得了优异成绩。VGG网络以其简洁而统一的设计理念闻名,全部使用3×3的小型卷积核和2×2的最大池化层,通过不断增加深度来提升网络性能。
VGG网络的主要贡献在于证明了网络深度对于模型性能的关键作用。与之前的AlexNet相比,VGG通过使用更小的卷积核和更深的网络结构,在保持计算量合理的同时显著提高了分类准确率。VGG-16和VGG-19两种配置尤其著名,数字代表网络中具有权重层的总数(卷积层和全连接层)。
二、VGG网络架构详解
1. 基本结构特点
VGG网络最显著的特点是全部使用3×3的小型卷积核,这种设计有以下几个优势:
-
更多的非线性变换:两个3×3卷积堆叠相当于一个5×5卷积的感受野,但使用了两次ReLU激活函数,增加了非线性表达能力。
-
更少的参数:一个5×5卷积层的参数数量为25C²(C为通道数),而两个3×3卷积