第32节:基于ImageNet预训练模型的迁移学习与微调

1. 引言

在深度学习领域,迁移学习(Transfer Learning)已经成为解决计算机视觉任务的重要方法,特别是在数据量有限的情况下。其中,基于ImageNet数据集预训练的模型因其强大的特征提取能力而被广泛应用于各种视觉任务。本文将详细介绍迁移学习的概念、ImageNet预训练模型的特点、微调(Fine-tuning)技术及其在实际应用中的实施方法。

2. 迁移学习概述

2.1 迁移学习的定义

迁移学习是指将在一个任务上训练得到的知识(模型参数)迁移到另一个相关任务上的过程。

与传统机器学习方法不同,迁移学习不要求训练数据和测试数据必须满足独立同分布的条件,

而是利用源领域(Source Domain)的知识来帮助目标领域(Target Domain)的学习。

2.2 迁移学习的优势

  1. 数据效率:当目标领域数据较少时,迁移学习可以显著提高模型性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值