前言
PyTorch作为当前最流行的深度学习框架之一,因其动态计算图和易用性受到广大研究者和开发者的喜爱。本文将详细介绍在2025年最新环境下PyTorch的安装方法,涵盖CPU和GPU版本的完整安装流程。
一、安装前准备
1. 检查Python版本
PyTorch 2025版本要求Python 3.9及以上版本,推荐使用Python 3.10或3.11。可以通过以下命令检查Python版本:
python --version
# 或
python3 --version
如果版本不符合要求,可以从Python官网下载最新版本。
2. 推荐使用虚拟环境
为避免包冲突,强烈建议使用虚拟环境。以下是创建虚拟环境的方法:
# 使用venv(Python内置)
python -m venv pytorch_env
source pytorch_env/bin/activate # Linux/Mac
pytorch_env\Scripts\activate # Windows
# 或者使用conda(如果你安装了Anaconda)
conda create -n pytorch_env python=3.11
conda activate pytorch_env
二、CPU版本安装
1. 基础安装
对于只需要CPU计算的用户,安装非常简单:
pip install torch torchvision torchaudio
2. 验证安装
安装完成后,可以通过以下Python代码验证:
import torch
print(f"PyTorch版本: {torch.__version__}")
print(f"是否可用: {torch.cuda.is_available()}") # 应该返回False
x = torch.rand(5, 3)
print(x)
三、GPU版本安装
GPU版本可以大幅加速深度学习训练过程,但安装过程稍复杂。
1. 检查显卡和驱动
首先确认你的显卡是否支持CUDA:
nvidia-smi # 查看NVIDIA显卡信息
确保你的NVIDIA驱动是最新的(2025年推荐驱动版本≥535.00)。
2. 安装CUDA Toolkit
PyTorch 2025.x版本对应CUDA 12.1或12.2:
# Windows/Linux用户可以从NVIDIA官网下载安装包
# https://developer.nvidia.com/cuda-downloads
# Ubuntu用户可以使用以下命令
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cuda-12-2
安装完成后,添加环境变量(以bash为例):
export PATH=/usr/local/cuda-12.2/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
3. 安装cuDNN
从NVIDIA cuDNN官网下载对应版本(与CUDA版本匹配),按照官方文档安装。
4. 安装PyTorch GPU版本
根据你的CUDA版本选择安装命令:
# CUDA 12.1
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# CUDA 12.2
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu122# CUDA 12.1
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# CUDA 12.2
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu122# CUDA 12.1
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# CUDA 12.2
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu122
5. 验证GPU支持
import torch
print(f"PyTorch版本: {torch.__version__}")
print(f"CUDA是否可用: {torch.cuda.is_available()}")
print(f"当前设备: {torch.cuda.current_device()}")
print(f"设备名称: {torch.cuda.get_device_name(0)}")
print(f"CUDA版本: {torch.version.cuda}")
四、常见问题解决
1. 版本冲突问题
如果遇到版本冲突,可以尝试:
pip install --upgrade --force-reinstall torch torchvision torchaudio
2. 离线安装
对于无法联网的环境,可以从PyTorch官网下载对应版本的whl文件进行离线安装。
3. 其他平台支持
-
Mac M1/M2芯片:使用Metal加速
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
验证Metal支持:
print(torch.backends.mps.is_available()) # 应该返回True
-
ROCm(AMD显卡):参考AMD官方文档安装ROCm后再安装PyTorch
五、IDE配置建议
1. VS Code配置
安装Python扩展和Pylance,确保能够正确识别PyTorch的自动补全。
2. PyCharm配置
在项目设置中确保选择了正确的Python解释器(你的虚拟环境)。
六、总结
2025年PyTorch的安装过程已经相当简化,特别是对于CPU版本。GPU版本虽然需要额外安装CUDA和cuDNN,但官方文档和社区支持已经非常完善。安装完成后,你就可以开始愉快的深度学习之旅了!
如果有任何安装问题,可以参考PyTorch官方论坛或相关社区寻求帮助。