
PyTorch项目实战
文章平均质量分 95
PyTorch铠甲,聆听我的召唤,变身!!!
优惠券已抵扣
余额抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
胖墩会武术
不要吃太多,吃饱了撑的一点都没错;
不吃也不行,丢失了追求幸福的欲望;
吃个八层饱,你会发现幸福都很简单。
展开
-
【深度学习环境配置】Anaconda + PyCharm + CUDA + cuDNN + PyTorch + OpenCV
(1)【CPU版本】Anaconda(Python) + Pycharm + Pytorch(CPU) + Opencv(2)【GPU版本】Anaconda(Python) + Pycharm + CUDA + cuDNN + Pytorch(GPU) + Opencv原创 2023-02-23 02:00:00 · 16066 阅读 · 0 评论 -
【深度学习项目实战目录】算法详解 + 项目详解 + 数据集 + 完整源码
主要汇总了深度学习不同领域的实战项目,每个项目都附有详细的算法分析、数据集以及源代码。原创 2023-01-31 10:52:53 · 7754 阅读 · 1 评论 -
【PyTorch项目实战】肿瘤检测:AI辅助诊断(低倍率分割淋巴结 + 高倍率分类肿瘤 + 热图计算T/MLN) + 专家审查
肿瘤检测:(1)分割网络(在 1 倍 WSI 上分割 LN),提取淋巴结区域,去除淋巴结外的脂肪、肌肉等组织。(2)分类网络(在 20 倍 LN 上分割肿瘤),用于将淋巴结区域分类为肿瘤区域和淋巴细胞区域。(3)根据热图,计算肿瘤转移淋巴结面积比(T/MLN)。原创 2025-02-13 20:58:53 · 1489 阅读 · 0 评论 -
【PyTorch项目实战】乳腺癌检测:CNN补丁嵌入 + CRF空间建模
神经条件随机场NCRF:(1)卷积神经网络CNN:作为特征提取器,以一组补丁网格作为输入,并将每个补丁编码为固定长度的向量表示(即嵌入)。(2)条件随机场CRF:以嵌入网格为输入,并对其空间相关性进行建模。最终输出是给定补丁嵌入网格时每个补丁为正常或肿瘤的边缘分布。原创 2025-02-14 13:43:48 · 1037 阅读 · 0 评论 -
【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
milesial/Pytorch-UNet 是一个基于 PyTorch 的 U-Net 实现项目,专注于语义分割任务。原创 2024-11-10 21:00:23 · 3030 阅读 · 0 评论 -
【TensorFlow项目实战】各向同性重建(3D荧光图像)
使用卷积神经网络对 3D 荧光显微镜图像进行各向同性重建原创 2024-12-19 21:20:05 · 1037 阅读 · 0 评论 -
pyinstaller打包exe(单文件 + 多文件)
PyInstaller用于将一个或多个 Python 脚本(.py)打包成独立可执行文件(.exe)的工具,用户不需要安装 Python 解释器和脚本所需的所有依赖项,即可运行。原创 2024-01-02 09:11:14 · 4904 阅读 · 0 评论 -
yolov7目标追踪:基于自定义数据集完成检测
目标追踪包含两个阶段:(1)基于自定义数据集,训练yolo目标检测模型;(2)基于检测模型,将实时检测结果传递到StrongSORT追踪算法中,该算法在OSNet基础上结合运动和外观信息,可以跟踪yolo模型检测到的任何物体。原创 2023-04-05 23:16:27 · 2080 阅读 · 22 评论 -
yolov7目标检测:基于自定义数据集完成检测、训练、测试
主要分三步:(1)环境配置与文件配置(2)检测(3)训练。其中,检测和训练都是可以独立进行的。检测是依赖于权重文件即可运行,而训练是基于自定义训练数据集和超参数生成权重文件。原创 2023-03-25 20:39:11 · 6474 阅读 · 13 评论 -
【PyTorch项目实战】语义分割:U-Net、UNet++、U2Net
图像分割:对图像中属于特定类别的像素进行分类(逐像素分类)。图像分类:识别图像中存在的内容。目标检测:识别图像中的内容和位置(通过边界框)。语义分割:识别图像中存在的内容以及位置(通过查找属于它的所有像素)。原创 2023-02-11 01:15:00 · 8120 阅读 · 14 评论 -
【PyTorch项目实战】之ResNet系列:resnet18、resnet34、resnet50、resnet101、resnet152
ResNet (Residual Network) :是一种深度卷积神经网络(CNN)架构,其核心思想是引入残差学习(Residual Learning)机制,通过跳跃连接(skip connections)来解决深层网络训练中的退化问题。原创 2023-04-22 03:00:00 · 5163 阅读 · 1 评论 -
【Pytorch项目实战】之对抗攻击:无目标对抗攻击(FGSM)、有目标对抗攻击(FGSM)
攻击思路将攻击任务转换为对抗样本生成任务(如何选取损失函数、如何搭建可以生成更好对抗样本的模型)如:GAN生成模型。核心手段:通过对输入样本进行不可察觉的细微扰动(添加对抗性噪声),使得神经网络对得到的对抗样本有较高的信任度,并输出任意想要的类别(使人眼和机器识别的类型不同)。攻击特点:由于机器学习模型的输入形式是数值型向量,故攻击者通过设计一种有针对性的数值型向量从而让机器学习模型做出误判。发生时期:主要发生在构造对抗性样本时,机器进行模型训练时。原创 2023-01-31 06:30:00 · 2100 阅读 · 0 评论 -
【Pytorch项目实战】之强化学习:Q-Learning、SARSA、DQN
Q-Learning、SARSA、深度Q网络(Deep Q Network,DQN)、策略梯度(Policy Gradients)等。:环境(Environment)、主体(Agent)、状态(State)、动作(Action)、奖励(Reward)的行动策略,有些动作将始终无法选择,进而导致无法更新Q值,将不利于发现更有价值的情况。问题1:(1)在实际应用下,由于场景很复杂,很难定义出离散且有限的状态和动作。若安装失败就多试几次。问题2:(2)即使能够定义,数量非常大的情况下,无法用数组存储。原创 2023-01-31 06:00:00 · 1245 阅读 · 0 评论 -
【Pytorch项目实战】之迁移学习:特征提取、微调、特征提取+微调、雾霾清除
具体过程:把任务A预训练模型(网络结构与权重参数),迁移到任务B上。A任务可以是识别图像中的车辆,而B任务可以是识别卡车、汽车、公交车等。原创 2023-01-30 03:00:00 · 1717 阅读 · 7 评论 -
【Pytorch项目实战】之生成式模型:DeepDream、风格迁移、图像修复
现有一个猫狗分类网络模型,当输入一张云的图像进行判断时,假设这朵云比较像狗,则机器提取的特征也会偏向于狗的特征。假设特征对应的概率分别为:[狗,猫] = [x1,x2] = [0.6,0.4],那么采用L2范数(L2 = x1 ^ 2 + x2 ^ 2)可以很好达到放大特征的效果,最终图像越来越像狗。先对图像连续做二次等比例缩小,该比例是1.5,之所以要缩小,图像缩小是为了让图像的像素点调整后所得结果图案能显示的更加平滑,过程主要是抑制了图像的高频成分,放大了低频成分。原创 2023-01-28 20:43:26 · 2145 阅读 · 0 评论 -
【Pytorch项目实战】之图像生成:编码器-解码器、自编码器AE、变分自编码器VAE、生成式对抗网络GAN
在CNN中,编码器 - 解码器网络通常看起来像这样(CNN编码器和CNN解码器),这是执行图像的语义分割的网络。网络的左半部分。原创 2023-01-28 20:39:15 · 2614 阅读 · 0 评论 -
【Pytorch项目实战】之机器翻译:编码器-解码器、注意力机制AM
由一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型。对于句子对,我们的目标是给定输入句子Source,期待通过Encoder-Decoder框架来生成目标句子Target。(1)传统的统计机器翻译(Statistical Machine Translation,SMT)。在中(英文句子 - 中文句子),给定Target(目标句子)中的某个元素Query(单词)。),这显然是不合理的,因为“Jerry”对于翻译“杰瑞”更重要。原创 2023-01-28 20:36:35 · 1274 阅读 · 0 评论 -
【Pytorch项目实战】之自然语言处理:RNN、LSTM、GRU、Transformer
其使用 Self-Attention 结构取代了在 NLP 任务中常用的 RNN 的顺序网络结构,使得模型可以并行化训练,而且能够充分利用训练资料的全局信息,加入Transformer的Seq2seq模型在NLP的各个任务上都有了显著的提升。当人视觉在感知东西时候往往会更加关注某个场景中显著性的物体,为了合理利用有限的视觉信息处理资源,人需要选择视觉区域中的特定部分,然后集中关注它。:CNN的输入图像大小固定,而在语音识别中,每句话的长度都是不一样的,且一句话的前后也是有关系的。可以捕获一个序列的信息。原创 2023-01-28 20:26:22 · 2542 阅读 · 0 评论 -
【PyTorch项目实战】图像分类与识别:手写数字识别(MNIST)、普适物体识别(CIFAR-10)
主要介绍了两个经典的实战项目:(1)基于 MNIST 数据集的手写数字识别(2)基于 CIFAR-10 数据集进行图像分类原创 2023-01-28 20:06:37 · 2812 阅读 · 0 评论 -
【Pytorch项目实战】之回归分析:气温预测
【代码】【Pytorch项目实战】之回归分析:气温预测。原创 2023-01-28 20:08:40 · 3419 阅读 · 5 评论