SEIR模型

1. 模型简介

SEIR模型是经典的传染病传播动力学模型,将人群划分为四类:

  • S (Susceptible):易感者(可能被感染的健康人群)

  • E (Exposed):潜伏期者(已感染但无症状、不传染)

  • I (Infectious):感染者(有症状且具有传染性)

  • R (Recovered/Removed):康复或移除者(痊愈获得免疫或死亡)

适用于描述潜伏期明显的传染病(如COVID-19、麻疹等)。

2. 模型微分方程

SEIR模型通过以下微分方程组描述疾病传播动态:

参数说明

  • β:有效接触率(感染率),与基本再生数 R0​ 关系:β=R0*γ

  • α:潜伏期转阳率(α=1/平均潜伏期)

  • γ:康复率(γ=1/平均感染期)

  • N:总人口(N=S+E+I+R)

3. 关键参数与意义

4. 模型特性

  1. 阈值现象

    • 当 R0>1时,疫情会爆发;R0<1时自然消退。

  2. 峰值预测

    • 感染人数峰值时间与 α,γ 相关。

  3. 群体免疫

    • 最终康复者比例 R∞​ 满足 1−R∞=exp(−R0R∞)。

5.代码实现

N=10000;%表示总人口数
T=200;%模拟天数
R0 = 5;  % 基本再生数
alpha = 0.1; % 潜伏期转确诊率 (1/潜伏期天数)
gamma = 0.05;% 康复率 (1/感染期天数)
beta = R0 * gamma;% 感染率 = R0 * 康复率
I=zeros(1,T);E=zeros(1,T);S=zeros(1,T);R=zeros(1,T);
I(1)=10;%初始发病期感染者
E(1)=0;%潜伏期感染者
R(1)=0;%康复者
S(1)=N-I(1);%易感者
for n=1:T-1  %每天循环,故为微分变差分
    S(n+1)=S(n)-beta*I(n)*S(n)/N;
    E(n+1)=E(n)+beta*I(n)*S(n)/N-alpha*E(n);
    I(n+1)=I(n)+alpha*E(n)-gamma*I(n);
    R(n+1)=R(n)+gamma*I(n);
end
figure,hold on;
plot(S,'r');
plot(E,'g');
plot(I,'b');
plot(R,'K');
legend('R','E','I','R');
xlabel('天数/天');
ylabel('人数');
grid on;

### SEIR模型数值分析方法实现 #### 1. 数值求解微分方程组 SEIR模型通过一组常微分方程描述疾病传播的动力学过程。具体来说,该模型跟踪四个不同状态的人群比例变化:易感者(Susceptible),暴露期(Eksposed),感染者(Infectious),康复者(Recovered)[^1]。 为了进行数值分析,可以采用Runge-Kutta法或其他适合的方法来近似求解上述微分方程组。以下是Python中使用`scipy.integrate.solve_ivp`函数的一个简单例子: ```python from scipy.integrate import solve_ivp import numpy as np import matplotlib.pyplot as plt def seir_model(t, y, beta, sigma, gamma): S, E, I, R = y dSdt = -beta * S * I dEdt = beta * S * I - sigma * E dIdt = sigma * E - gamma * I dRdt = gamma * I return [dSdt, dEdt, dIdt, dRdt] # 参数设定 N = 1000 # 总人口数 I0 = 1 # 初始感染人数 E0 = 0 # 初始潜伏人数 S0 = N - I0 # 初始未感染者数量 R0 = 0 # 初始已恢复者数量 beta = 0.2 # 接触率 (每天接触的有效传染概率) sigma = 0.5 # 潜伏转染病的速度 gamma = 1/7 # 康复速度 (平均七天康复) y0 = [S0/N, E0/N, I0/N, R0/N] t_span = [0, 160] solution = solve_ivp(seir_model, t_span, y0, args=(beta, sigma, gamma), dense_output=True) time_points = np.linspace(t_span[0], t_span[1]) results = solution.sol(time_points) plt.plot(time_points, results.T) plt.legend(['Susceptible', 'Exposed', 'Infected', 'Recovered']) plt.xlabel('Time /days') plt.ylabel('Fraction of population') plt.show() ``` 此代码片段展示了如何定义并解决SEIR模型所对应的ODEs,并绘制随时间变化的不同类别个体的比例图[^3]。 #### 2. 敏感度分析 敏感度分析用于评估参数不确定性对模型输出的影响程度。可以通过改变某些关键参数(如β、σ或γ),观察其对最终结果产生的影响来进行这项工作。这有助于理解哪些因素最能驱动疾病的传播动态,从而指导公共卫生决策制定者的注意力集中在最重要的干预措施上[^4]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值