SEIR模型

1. 模型简介

SEIR模型是经典的传染病传播动力学模型,将人群划分为四类:

  • S (Susceptible):易感者(可能被感染的健康人群)

  • E (Exposed):潜伏期者(已感染但无症状、不传染)

  • I (Infectious):感染者(有症状且具有传染性)

  • R (Recovered/Removed):康复或移除者(痊愈获得免疫或死亡)

适用于描述潜伏期明显的传染病(如COVID-19、麻疹等)。

2. 模型微分方程

SEIR模型通过以下微分方程组描述疾病传播动态:

参数说明

  • β:有效接触率(感染率),与基本再生数 R0​ 关系:β=R0*γ

  • α:潜伏期转阳率(α=1/平均潜伏期)

  • γ:康复率(γ=1/平均感染期)

  • N:总人口(N=S+E+I+R)

3. 关键参数与意义

4. 模型特性

  1. 阈值现象

    • 当 R0>1时,疫情会爆发;R0<1时自然消退。

  2. 峰值预测

    • 感染人数峰值时间与 α,γ 相关。

  3. 群体免疫

    • 最终康复者比例 R∞​ 满足 1−R∞=exp(−R0R∞)。

5.代码实现

N=10000;%表示总人口数
T=200;%模拟天数
R0 = 5;  % 基本再生数
alpha = 0.1; % 潜伏期转确诊率 (1/潜伏期天数)
gamma = 0.05;% 康复率 (1/感染期天数)
beta = R0 * gamma;% 感染率 = R0 * 康复率
I=zeros(1,T);E=zeros(1,T);S=zeros(1,T);R=zeros(1,T);
I(1)=10;%初始发病期感染者
E(1)=0;%潜伏期感染者
R(1)=0;%康复者
S(1)=N-I(1);%易感者
for n=1:T-1  %每天循环,故为微分变差分
    S(n+1)=S(n)-beta*I(n)*S(n)/N;
    E(n+1)=E(n)+beta*I(n)*S(n)/N-alpha*E(n);
    I(n+1)=I(n)+alpha*E(n)-gamma*I(n);
    R(n+1)=R(n)+gamma*I(n);
end
figure,hold on;
plot(S,'r');
plot(E,'g');
plot(I,'b');
plot(R,'K');
legend('R','E','I','R');
xlabel('天数/天');
ylabel('人数');
grid on;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值