顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)

图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。

今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!

AAAI2024

1、Fine-tuning Graph Neural Networks by Preserving Graph Generative Patterns

通过保留图生成模式对图神经网络进行微调

简述:本文发现预训练图神经网络(GNN)与下游任务图之间性能差异的原因在于它们生成模式的不同,并提出了G-Tuning方法,它调整预训练GNN以逼近下游任务图的生成模式。由于直接重建这些模式计算成本高,研究人员找到了一种理论上的替代方法,使用图on基的线性组合来近似。这一发现使得这个模型能够有效学习,并在迁移学习实验中相比其他算法取得了更好的性能。

图片

2、A Generalized Neural Diffusion Framework on Graph

图上的广义神经扩散框架

简述:本文中提出了一个新的包含保真项的扩散方程框架,用以统一并深化对图神经网络的理解。研究发现现有神经扩散过程通常只涉及一阶扩散,而高阶邻居标签的一致性促使设计新型高阶感知扩散方程,从而提出了一种新型的图扩散网络模型HiD-Net。HiD-Net不仅理论上与高阶随机游走相联系,并且具有收敛性保证,实验结果也显示其在不同类型的图上具有出色的性能和鲁棒性。

NeurIPS2023

3、Newton–Cotes Graph Neural Networks: On the Time Evolution of Dynamic Systems

Newton-Cotes图神经网络:关于动态系统的时间演化

简述:推理系统动力学是重要分析方法,用于预测未来系统状态,研究人员分析了这些方法的共同点,即它们通过积分速度来学习坐标变化,并指出它们的积分在时间上是恒定的。基于此,提出了一种新的积分预测方法,利用牛顿-科特斯公式对速度进行多点估计,并理论上和实验上验证了其优越性。

图片

4、Adversarial Robustness in Graph Neural Networks: A Hamiltonian Approach

图神经网络中的对抗鲁棒性:哈密顿方法

简述:本文分析了GNN对抗性扰动的影响,包括节点特征和图结构的干扰,并研究了它们与不同稳定性概念的关系。研究人员发现李雅普诺夫稳定性不足以保证对抗性鲁棒性,因此提出使用基于哈密顿流的保守GNN来增强抵抗对抗性攻击的能力。在多个数据集上的实验结果显示,这种方法能有效提高GNN的对抗性鲁棒性。

图片

5、A new perspective on building efficient and expressive 3D equivariant graph neural networks

构建高效且富有表现力的三维等变图神经网络的新视角

简述:本文中提出了一种用于评估等变图神经网络表现力的三维同构局部层次结构,并研究了如何从局部结构表示全局几何信息。研究人员开发了两个关键模块:局部子结构编码(LSE)和帧转换编码(FTE),用于设计表现力强、高效的几何GNN,并基于这些模块构建了LEFTNet,在分子性质预测任务上获得了领先的性能,同时为等变GNN的未来设计提供了方向。

图片

ICML2023

6、Path Neural Networks: Expressive and Accurate Graph Neural Networks

路径神经网络:表达准确的图神经网络

简述:本文中提出了路径神经网络(PathNN),一种新型图神经网络,通过整合节点发出的不同路径来更新节点表示。PathNN有三种变体,分别聚合单条、所有最短路径和所有长度不超过K的简单路径,其中两个变体在理论上优于1-WL算法,在图分类和回归任务中,PathNN变体在大多数情况下都优于基准方法。

图片

7、Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure

图神经网络可以仅从图结构中恢复隐藏的特征

简述:本文研究图神经网络在图学习问题中的表现力,研究表明GNNs能够从图中恢复隐藏的节点特征,并利用这些特征进行下游任务,即使这些特征在原始图中不可见。实验证实了GNNs在恢复和利用隐藏特征方面的有效性。

图片

ICLR2023

8、LEARNING ON LARGE-SCALE TEXT-ATTRIBUTED GRAPHS VIA VARIATIONAL INFERENCE

基于变分推理的大规模文本属性图学习

简述:本文提出了一种高效且有效的大型文本属性图学习解决方案,将图结构和语言学习与变分期望最大化(EM)框架(称为GLEM)融合在一起。GLEM采用E-step和M-step交替更新,允许独立训练两个模块并相互增强。实验证明该方法在多个数据集上有效。

图片

9、RETHINKING THE EXPRESSIVE POWER OF GNNS VIA GRAPH BICONNECTIVITY

通过图双连通重新思考GNN的表现力

简述:本文探究了图神经网络在WL测试之外的表现力,并提出了图双连通性这一新的性能指标。研究发现,除ESAN框架之外,大部分现有GNN框架无法捕捉这一指标,于是提出了广义距离魏斯菲勒-雷曼兄弟(GD-WL)方法,它可证明对所有双连接指标都具有表达能力,并且可以通过类似 Transformer 的架构来实现,该架构保留了表达性并享有完全并行化。

图片

10、PRE-TRAINING VIA DENOISING FOR MOLECULAR PROPERTY PREDICTION

通过去噪进行分子性质预测的预训练

简述:本文提出了一种去噪预训练方法,通过大型3D分子结构数据集学习分子性质的表示,以提高分子性质预测的准确性。实验结果表明,在QM9数据集上,该方法能够取得领先的性能。此外,研究人员还分析了数据集大小、模型规模和架构选择等因素对预训练效果的影响。

图片

11、Relational Attention: Generalizing Transformers for Graph-Structured Tasks

关系注意力:为图结构化任务泛化转换器

简述:本文研究人员将Transformer注意力推广到考虑和更新每个Transformer层中的边缘向量。这种改进的模型在多种图结构任务中得到验证,尤其在复杂的CLRS算法推理基准上,其性能远超专为图数据设计的图神经网络。

图片

KDD2023

12、Spatial Heterophily Aware Graph Neural Networks 

空间异质感知图神经网络

简述:本文中提出了空间异质感知图神经网络(SHGNN),用于处理城市图的复杂空间异质性。通过创新的空间聚合和交互模块,SHGNN能够更有效地处理和理解城市数据的多样性和异质性。在多个真实世界的城市数据集上的测试表明,这个模型在性能上超越了多个竞争模型。

图片

13、GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks

GraphGLOW:面向图神经网络的通用和可泛化的结构学习

简述:提出了一种通用结构学习模型,旨在实现跨不同图数据集的泛化能力。并提出了一个通用框架,该框架协调单个图共享结构学习器和多个特定于图的 GNN,这个训练好的学习器能够为新的图生成适应性结构,无需进一步调整。实验结果表明,即便没有在目标图数据集上进行训练,此模型也能展现出强大的泛化性能,与针对特定图优化的先进模型相媲美。

图片

14、Learning Strong Graph Neural Networks with Weak Information

学习弱信息的强图神经网络

简述:本文中提出了D2PT的双通道GNN框架,能够解决弱信息图学习问题。该框架可在结构不完整的图上长距离传播信息,并利用全局图传播语义相似性。研究人员还进一步开发原型对比对齐算法,使两种传播过程相互受益。实验证明D2PT在真实世界基准数据集上有效且高效。

图片

码字不易,欢迎大家点赞评论收藏!

关注下方《享享学AI》

回复【GNN】获取完整论文

👇

  • 15
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
当然可以!以下是一个简单的示例代码,展示了如何使用PyTorch Geometric库实现一个神经网络Graph Neural Network,GNN)模型: ```python import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.datasets import Planetoid from torch_geometric.nn import GCNConv # 加载数据集 dataset = Planetoid(root='data/Cora', name='Cora') data = dataset[0] class GNNModel(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(GNNModel, self).__init__() self.conv1 = GCNConv(input_dim, hidden_dim) self.conv2 = GCNConv(hidden_dim, output_dim) def forward(self, x, edge_index): x = F.relu(self.conv1(x, edge_index)) x = self.conv2(x, edge_index) return F.log_softmax(x, dim=1) # 配置模型和优化器 input_dim = dataset.num_features hidden_dim = 16 output_dim = dataset.num_classes model = GNNModel(input_dim, hidden_dim, output_dim) optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4) # 训练模型 model.train() for epoch in range(200): optimizer.zero_grad() out = model(data.x, data.edge_index) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() # 测试模型 model.eval() _, pred = model(data.x, data.edge_index).max(dim=1) correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item()) acc = correct / int(data.test_mask.sum()) print(f'Test Accuracy: {acc:.4f}') ``` 上述代码使用了PyTorch Geometric库来加载Cora数据集,并根据GCN(Graph Convolutional Network)模型的架构实现了GNN模型。模型的前向传播通过两个GCNConv层实现,使用ReLU作为激活函数,并使用log_softmax输出。然后使用Adam优化器进行训练,并使用负对数似然损失进行监督学习。最后,将模型切换到评估模式,计算测试集上的准确率。 请注意,这只是一个简单的示例,实际应用中可能需要根据需求进行调整和优化。你可以根据自己的数据集和任务来修改和扩展这个代码。希望对你有帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值