顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)

本文汇总了AAAI2024、NeurIPS2023、ICML2023和ICLR2023四大顶会的14篇图神经网络(GNN)研究论文,涉及图生成模式、神经扩散框架、对抗鲁棒性、3D等变GNN、路径神经网络等多个前沿方向。这些研究提升了GNN在动态系统预测、图结构学习、分子性质预测等方面的表现力和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。

今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!

AAAI2024

1、Fine-tuning Graph Neural Networks by Preserving Graph Generative Patterns

通过保留图生成模式对图神经网络进行微调

简述:本文发现预训练图神经网络(GNN)与下游任务图之间性能差异的原因在于它们生成模式的不同,并提出了G-Tuning方法,它调整预训练GNN以逼近下游任务图的生成模式。由于直接重建这些模式计算成本高,研究人员找到了一种理论上的替代方法,使用图on基的线性组合来近似。这一发现使得这个模型能够有效学习,并在迁移学习实验中相比其他算法取得了更好的性能。

图片

2、A Generalized Neural Diffusion Framework on Graph

图上的广义神经扩散框架

简述:本文中提出了一个新的包含保真项的扩散方程框架,用以统一并深化对图神经网络的理解。研究发现现有神经扩散过程通常只涉及一阶扩散,而高阶邻居标签的一致性促使设计新型高阶感知扩散方程,从而提出了一种新型的图扩散网络模型HiD-Net。HiD-Net不仅理论上与高阶随机游走相联系,并且具有收敛性保证,实验结果也显示其在不同类型的图上具有出色的性能和鲁棒性。

NeurIPS2023

3、Newton–Cotes Graph Neural Networks: On the Time Evolution of Dynamic Systems

Newton-Cotes图神经网络:关于动态系统的时间演化

简述:推理系统动力学是重要分析方法,用于预测未来系统状态,研究人员分析了这些方法的共同点,即它们通过积分速度来学习坐标变化,并指出它们的积分在时间上是恒定的。基于此,提出了一种新的积分预测方法,利用牛顿-科特斯公式对速度进行多点估计,并理论上和实验上验证了其优越性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值