考公必备!自然地理知识竟和行测申论息息相关

正在备考公务员的小伙伴们注意啦!你以为自然地理知识只是常识题里的 “过客”?大错特错!它可是悄咪咪地渗透在行测和申论的各个角落,从科学推理到资料分析,从综合分析题到策论文写作,都能看到它的身影。今天,咱们就来深扒一下太阳、地球和自然灾害这些自然地理基础知识,看看它们如何在考公之路上助你一臂之力。

一、太阳:不只是常识考点,更是推理关键

太阳,这个炽热的气体球,主要成分是氢和氦,内部结构分为核反应区、对流层和大气层,而大气层又从内到外依次为光球层、色球层和日冕层 。这些可不是简单的知识点,在科学推理题中,对太阳结构和活动的理解,能帮你快速判断诸如太阳黑子、耀斑、太阳风等现象对地球的影响。

比如,当太阳黑子爆发、耀斑出现时,地球的磁场和电离层会受到干扰,进而影响无线电通讯。在行测的科技类题目里,可能就会考查这一原理,让你判断在特定太阳活动下,哪种通讯方式受影响最大。又或者结合地理知识,问你极光在地球哪些区域更容易出现,答案就藏在太阳风与地球磁场相互作用的原理里。

再看太阳直射点的移动规律,春分在赤道,随后北移至北回归线(夏至),接着南移回赤道(秋分),继续南移至南回归线(冬至),之后又北返赤道。这一规律与地球四季变化、昼夜长短变化紧密相连。在行测数量关系中,偶尔会出现结合地理现象考查的题目,比如根据不同节气太阳直射点的位置,计算某地的日照时长或影子长度变化。掌握了太阳直射点的移动,这类题目便能迎刃而解。

二、地球:行测申论都爱的 “宠儿”

地球作为太阳系的重要行星,其内部圈层结构(地壳、地幔、地核)和外部圈层(大气圈、水圈、生物圈、岩石圈)是行测常识判断的高频考点。以地壳为例,它由岩石组成,平均厚度约 17 千米,包含多种化学元素 。这一知识点在考查地理资源分布、地质灾害成因时常常出现。像在分析地震、火山等地质灾害时,就需要了解地壳的板块构造学说。地球岩石圈分为六大板块,板块交界处地壳活跃,多地震、火山活动。在申论的生态环境、防灾减灾相关主题中,这些知识能为你提供有力的论据,让你在论述如何应对地质灾害、保护生态环境时更具专业性和说服力。

地幔中的软流层,被认为是岩浆的主要发源地,软流层以上的地幔顶部和地壳共同构成岩石圈。这些知识在解释地貌形成原因时十分关键,而地貌相关知识在行测的图形推理、资料分析题目中也可能出现。比如,给定一些地形地貌的图片或数据,让你分析其形成过程、所属区域,这时对地球内部结构和板块运动的理解就至关重要。

三、自然灾害:申论写作的实用素材库

自然灾害,包括地质灾害(地震、火山、泥石流)和气象灾害(台风、旱灾、洪涝、沙尘暴、寒潮),是考公绕不开的重点。在申论考试里,自然灾害常作为社会热点问题出现在材料中,要求考生分析原因、提出对策。

就拿地震来说,从概念上,它是地壳快速释放能量产生振动并传播地震波的自然现象。在申论答题时,你可以从地震的震源、震级、地震带分布等方面入手,分析地震造成破坏的程度和范围,进而提出加强地震监测预警、提高建筑抗震标准、完善应急救援体系等对策。对于火山,了解其分类(死火山、活火山、休眠火山)和火山带分布,能让你在探讨资源开发与环境保护关系时更有深度。

气象灾害方面,台风、旱灾、洪涝等与农业生产、社会经济发展紧密相关。在申论写作中,分析这些灾害对农业、工业、交通等行业的影响,以及如何通过完善气象预警机制、加强水利设施建设、调整农业产业结构等措施来防灾减灾,都是很好的论述角度。例如,在论述旱灾应对策略时,可以结合我国干旱半干旱地区的实际情况,提出推广节水灌溉技术、发展耐旱作物等具体建议。

总之,自然地理知识看似繁杂,实则与考公的行测和申论紧密相连。掌握这些知识,不仅能提升你的常识储备,更能在解题和写作中助你一臂之力。

NVIDIA深度学习学院(DLI)是一个专注于深度学习、加速计算人工智能领域的培训与认证平台。通过其丰富的学习资源,学员可以掌握构建、训练部署神经网络等核心技能。本文将重点介绍NVIDIA DLI深度学习基础课程中的关键知识点,包括深度学习模型的构建、数据预处理等。 模型构建 在代码示例中,使用TensorFlow的Keras模块导入了预训练的VGG16模型作为基础架构。 关键点包括: 使用keras.applications.VGG16加载VGG16模型,其中weights="imagenet"表示使用基于ImageNet数据集的预训练权重;input_shape=(224,224,3)指定了输入图像的尺寸为224×224像素,且为三通道(RGB);include_top=False意味着不包含原始模型的顶层全连接层。 通过base_model.trainable = False冻结基础模型的所有层,确保在后续训练中这些层的权重不会更新。 构建新模型时,创建输入层inputs = keras.Input(shape=(224,224,3)),利用基础模型提取特征x = base_model(inputs, training=False),随后添加全局平均池化层x = keras.layers.GlobalAveragePooling2D()(x),并在最后添加一个具有6个节点的分类层outputs = keras.layers.Dense(6, activation="softmax")(x),适用于多分类任务。 使用model.summary()查看模型的结构细节。 编译模型时,选择交叉熵损失函数loss="categorical_crossentropy"、Adam优化器optimizer="adam"以及准确率metrics=["accuracy"]作为评估指标
《Java+SQL Server学生成绩管理系统》是一款融合了Java编程语言与SQL Server数据库技术的软件,专为高校或教育机构设计,用于高效管理学生的考试成绩。它具备数据录入、查询、统计分析等功能,旨在提升教学管理效率。 该系统的核心技术包括:一是Java后端开发。Java承担后端任务,处理HTTP请求、实现业务逻辑以及与数据库交互。项目可能借助Spring框架,利用其依赖注入、AOP等特性,简化开发流程。Spring MVC则助力实现MVC模式,处理Web请求。二是JSP技术。JSP是一种动态网页技术,页面融合HTML、CSS、JavaScriptJava代码,用于呈现用户界面及处理前端简单逻辑。三是SQL Server数据库。作为数据存储后端,SQL Server支持通过SQL语句完成表的创建、数据的增删改查等操作,还可借助存储过程触发器提升功能与安全性。四是数据库设计。系统数据库设计关键,包含“学生”“课程”“成绩”等表,通过主外键关联数据,如“学生”表与“成绩”表通过学生ID关联,“课程”表与“成绩”表通过课程ID关联。五是B/S架构。采用浏览器/服务器架构,用户经Web浏览器访问系统,计算与数据处理在服务器端完成,降低客户端硬件要求。六是安全性。系统设置身份验证与授权机制,如登录验证,确保信息访问安全。同时,为防范SQL注入等威胁,采用预编译语句或ORM框架处理SQL命令。七是异常处理。Java的异常处理机制可捕获运行时问题,保障系统稳定性与用户体验。八是报表统计功能。系统具备成绩统计功能,如计算平均分、排名、及格率等,常使用聚合函数(SUM、AVG、COUNT等)GROUP BY语句。九是设计模式。开发中可能运用单例模式、工厂模式等,提升代码可维护性复用性。十是版本控制。项目可能使用Git等版本控制系统,便于团队协作与代码管理。 该学生成绩管理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值