描述
设二叉树中每个结点的元素均为一个字符,按先序遍历的顺序建立二叉链表,编写算法计算该二叉树的最大宽度(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)。
输入
多组数据。每组数据一行,为二叉树的先序序列(序列中元素为‘0’时,表示该结点为空)。当输入只有一个“0”时,输入结束。
输出
每组数据输出一行。为二叉树的最大宽度。
//基于二叉链表的二叉树最大宽度的计算
//可用层次遍历的方法 利用队列实现
//1 判断是否为空树 如果是则宽度为0 不是则分别记录局部的宽度和当前的最大宽度 逐层遍历结点
//如果节点有孩子结点 则将其孩子节点加入队尾 每层遍历完后 若局部宽度大于最大宽度则更新
#include<iostream>
#define MAXSIZE 100
using namespace std;
typedef struct BiTNode{
char data; //结点数据域
struct BiTNode *lchild,*rchild; //左右孩子指针
}BiTNode,*BiTree;
void CreatBiTree(BiTree &T){
//按先序次序输入二叉树中结点的值 创建二叉链表表示的二叉树
char ch;
cin>>ch;
if(ch=='0') T=NULL; //递归结束 空树
else{ //递归创建二叉树
T = new BiTNode; //生成根节点
T->data = ch; //根结点数据域置ch
CreatBiTree(T->lchild); //递归创建左子树
CreatBiTree(T->rchild); //递归创建右子树
}
}
void CreatBiTree(BiTree &T,char ch){
//按先序次序输入二叉树中结点的值 创建二叉链表表示的二叉树
if(ch=='0') T = NULL; //递归结束 空树
else{ //递归创建二叉树
T = new BiTNode; //生成根节点
T->data = ch; //根结点数据域置ch
CreatBiTree(T->lchild); //递归创建左子树
CreatBiTree(T->rchild); //递归创建右子树
}
}
//第一种广度遍历
int Width(BiTree T){ //求二叉树的最大宽度
if(T==NULL) return 0;
else{
BiTree Q[MAXSIZE]; //Q为队列 元素为二叉树结点指针
int front=1, rear =1, last =1, temp =0,maxw =0;
//队列头指针,尾指针,当前层的最后一个结点所在的队列位置,temp临时宽度,maxw截止到目前的最大宽度
Q[rear]=T; //根节点入队
while(front<=last){//出队指针到本层最后一个结点处停止循环
BiTree p = Q[front++];//出队,出完队后本层结点数+1;
temp++; //同层元素数加一
if(p->lchild!=NULL)
Q[++rear]=p->lchild;
if(p->rchild!=NULL)
Q[++rear]=p->rchild;//下层结点入队
if(front>last){ //本层结束
last = rear;//下层的最后一个结点的位置
if(temp>maxw) maxw=temp;
temp = 0;
}
}
return maxw;
}
}
int main()
{ char ch;
while(cin>>ch&&ch!='0'){
BiTree T1;
CreatBiTree(T1,ch);
cout<<Width(T1)<<endl;
}
return 0;
}