2024年10月,来自美国的一个网友通过计算机梅森大搜索网站,找到了一个新的质数,这个质数有41034320位数,为2的136279841次方-1。
而距离上一次人类找到的特别大的质数过去了仅仅6年,已经超出了1600多万位。上次是M82589933(有24862048位数),这次是M136279841。
不过我通过M216091与M20996011,利用自己的特殊手段筛选梅森素数,便一口咬定M46694888101一定是个质数,也许现阶段的计算器无法验证它是合数还是质数,但我认为它就是质数。
我一口咬定M46694888101(466亿多)是质数是有原因的,因为早20年前就有人利用梅森素数大搜索找到了M216091是质数,我通过216091分解质因数得到3²✖️7⁴✖️10+1
且216091✖️2-1=41✖️83✖️127
并且后来在21世纪初有人找到M20996011是梅森素数以后,我用20996011分解质因数得到3⁴✖️7²✖️23²✖️10+1
且20996011✖️2-1=3301✖️12721
如今我利用3的n次方✖️7的n次方✖️10的n次方+1,如果这个数字是质数,极大可能就是梅森素数,我用如此筛选法寻找梅森素数,虽然我不会用电脑验证,我家也没有特别大的豪华版电脑,但我用这个方式一致认为M46694888101是梅森素数。
因为466948881分解得到3⁴✖️7⁸,又因为4669488811不是质数,所以我便想通过3⁴✖️7⁸✖️10²+1看看是不是质数,果然46694888101是质数。
又因为46694888101✖️2-1正好又等于19²✖️379²✖️1801,我通过这样分解质因数以后,结合216091以及20996011,便严重怀疑了它。
好在如今,美国做出了高额悬赏,找到超过1亿位数以上的质数,奖励15万。
最初的时候,有很多人认为M2147483647是梅森素数,后在1983年被人用电脑找到了一个素因子为2✖️68745✖️2147483647+1,
如果M46694888101经电脑验证是质数的话,我觉得我至少可以拿美国机构的150万悬赏奖励了
我通过M82589933得到有24862048位数以后,再通过M136279841得到有41034320位数以后,再来看一下M46694888101有多少位数?
140亿5656万2430位数,竟然高出342倍。
不知道现如今有没有专业的电脑可以用来验证我所说的2⁴⁶⁶⁹⁴⁸⁸⁸¹⁰¹-1是不是质数,如果它真的是质数,我等着国际组织奖赏我多少钱吧?