梅森素数大搜索猜测部分

当2的p次方-1是质数,首先已经证明p一定是质数。但是世界未破解的难题是,梅森素数这样的完美数字是否存在无穷多个。截止2024年,距离上一个指数82589933(24862048位数质数)已经六年过去了,至今一无所获。那么问题就来了,在指数一亿多到100亿多的范围内,罪魁祸首又藏在哪?这被誉为数学史上的珍宝。

本人经过梅森素数指数p等于21701、216091和20996011被证实为质数的时候,作出了一个猜测,因为21701=2²✖️5²✖️7✖️31+1

216091=2✖️5✖️3²✖️7的四次方+1

20996011=2✖️5✖️3的四次方✖️7²✖️23²+1

通过这一类型推断发现并猜测认为,不知道这样说大家能不能听懂,规律是

在2亿-2.2亿多,20亿-22亿多,如果这个大数存在2✖️3✖️5✖️7✖️的平方,或者3次方,或者四次方,再乘以任何一个质数平方➕1,而且➕1以后是质数,那么这个数字就可以被重点关注为梅森素数。比如204575491、207532837、201924101、2382392251、2136274561、227040031

还有2063244961、2173265641也需要被重点关注

243e2daf177142049b7bc837cd9a74a2.jpg

 03d9e1a2cff7474ca2e48fe286c988f5.jpg

 然后再通过859433和82589933这一类型发现,可能是因为2的33次方等于8589934592,所以跟这个数字有关的存在的质数,也需要被着重关注,那么我在8亿多里面就列出了两个数字来作为猜测部分

835899637、858993433。

dd6ddaae9c754aee8825a5bfe98acb5f.jpg

 8983e740b5d14382946f092143a40c2a.jpg

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值