题目:CodeForces - 1332D
解析:
可以看出来题目给的动态转移方程每次都取最大与&,我们只需要将它dp最后的结果转换为0,而最大值应该为k就可以了,容易发现在3*3的格子中就可以实现,将a3*3上、左的值要使他们dp结果为二进制下比k要多一个1(设为g1),其余值为0,这样的到的A3,3就会为0,然后再想办法如何让dp3*3的上左值为k1,可以如下图构造,k1为k二进制下多1.
k1 | k1 | k |
g1 | g1 | k1 |
g1 | g1 | k |
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
signed main()
{
int k;
cin>>k;
string s;
int x=k;
while(x>0){
int y=x%2;
char c='0'+y;
s+=c;
x/=2;
}
int a[5][5];
int k1=k+pow(2,(int)s.size());
int jd=pow(2,(int)s.size());
for(int i=1;i<=3;i++){
for(int j=1;j<=3;j++){
if(i==1||j==3) a[i][j]=k1;
else{
a[i][j]=jd;
}
}
}
a[1][3]=k;
a[3][3]=k;
cout<<"3 3"<<endl;
for(int i=1;i<=3;i++){
for(int j=1;j<=3;j++){
cout<<a[i][j]<<" ";
}
cout<<endl;
}
return 0;
}
题目:CodeForces - 1503B
解析:
本题题意是每次a给一个数字代表颜色(1~3),你需要拿另一种颜色去涂方块,而且相邻方块颜色不同,你每次该怎么涂,这是一个构造题。我们可以将(i+j)%2为1或者0来代表涂1颜色还是2颜色,这样的到的矩阵颜色都不相邻,这时候让a提问,当其指定1时就涂对应颜色2的位置,2没有了位置就将3涂到1的位置。a指定2时也同理。这样就满足了所有条件。
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
signed main()
{
ios::sync_with_stdio(0), cin.tie(0);
int n;
cin>>n;
vector<pii> a[2];//a[0]装为2的点,a[1]装为1的点
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int y=(i+j)%2;//这样可以是1,2颜色填充不相邻
a[y].push_back({i,j});
}
}
for(int i=1;i<=n*n;i++){
int q;
cin>>q;
if(q==1){
if(!a[0].empty()){
cout<<"2 "<<a[0].back().first<<" "<<a[0].back().second<<endl;
a[0].pop_back();
}
else{//2的点不够用,用3装进为原本该装1的点
cout<<"3 "<<a[1].back().first<<" "<<a[1].back().second<<endl;
a[1].pop_back();
}
}
else if(q==2){
if(!a[1].empty()){
cout<<"1 "<<a[1].back().first<<" "<<a[1].back().second<<endl;
a[1].pop_back();
}
else{
cout<<"3 "<<a[0].back().first<<" "<<a[0].back().second<<endl;
a[0].pop_back();
}
}
else{
if(!a[0].empty()){
cout<<"2 "<<a[0].back().first<<" "<<a[0].back().second<<endl;
a[0].pop_back();
}
else{
cout<<"1 "<<a[1].back().first<<" "<<a[1].back().second<<endl;
a[1].pop_back();
}
}
}
return 0;
}
题目:[JSOI2007]建筑抢修
E-[JSOI2007]建筑抢修_秋季算法入门班第五章习题:优先队列、并查集第二周 (nowcoder.com)
解析:
题意是给你s个建筑,每个建筑都有一个修理时间,和必须在什么时间内修好,我们要找到最大可以抢修多少建筑。因此我们要尽量把早报废的建筑修好,同时,修的时间也不可以太长比如:(9,10)、(4,11)、(2,11)、(2、14)如果要修早报废的那么只能修2个,但最多其实可以修三个。我们将报废时间由早到晚放入优先队列(大顶堆)中,看现在的时间开始修理,加上修理需要的时间,能否修理完成,能完成就放入优先队列中,不能就拿当前的修理时间和堆顶的比如果比堆顶小就拿出堆顶,放入自己(自己一定是能修理完成的),这样从时间上看就减少了时间(早报废的修理时间长就不修理了尽量多修理这种思想),最后看优先队列中存了多少数,就代表能修理好多少建筑。
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
pii a[150004];
bool cmp(pii x,pii y){
if(x.second==y.second) return x.first<y.first;
return x.second<y.second;
}
priority_queue<int,vector<int> > q;
signed main()
{
ios::sync_with_stdio(0), cin.tie(0);
int n;
cin>>n;
for(int i=1;i<=n;i++){//前修理时间,后修理截止时间
int x,y;
cin>>x>>y;
a[i].first=x,a[i].second=y;
}
sort(a+1,a+n+1,cmp);//按截止时间由大到小逐渐判断
int t=0;
int ans=0;
for(int i=1;i<=n;i++){
if(t+a[i].first<=a[i].second){
t+=a[i].first;
q.push(a[i].first);
}
else{
if(q.top()>a[i].first){//虽然顶的截止时间快,但是该元素所用的时间短,换该元素。
t-=q.top();
q.pop();
t+=a[i].first;
q.push(a[i].first);
}
}
}
cout<<q.size()<<endl;
return 0;
}
题目:加边的无向图
解析:
本题就使用并查集,让子节点直接指向他们的父亲,这样查询更快,否则会超时,最后通过对每一个点遍历,看有多少种不同的父亲,有x种就需要再连接x-1条线,就可以使任意两点可达。
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
int n,m;
map<string,int> ma;
int f[100004];
int find(int x){
if(f[x]==x)return x;
return f[x]=find(f[x]);
}
signed main()
{
ios::sync_with_stdio(0), cin.tie(0);
cin>>n>>m;
int t=1;
for(int i=1;i<=n;i++) f[i]=i;
for(int i=1;i<=m;i++){
int x,y,xx,yy;
cin>>x>>y;
xx=find(x),yy=find(y);
if(xx!=yy) f[xx]=yy;
}
set<int> se;
for(int i=1;i<=n;i++){
int x=find(i);
se.insert(x);
}
cout<<se.size()-1<<endl;
return 0;
}