题目描述
从前有一个贸易市场,在一位执政官到来之前都是非常繁荣的,自从他来了之后,发布了一系列奇怪的政令,导致贸易市场的衰落。
有 n nn 个商贩,从 0∼n−1 0 \sim n - 10∼n−1 编号,每个商贩的商品有一个价格 ai a_iai,有两种政令:
- l,r,c l, r, cl,r,c,对于 i∈[l,r],ai←ai+c i \in [l, r], a_i \leftarrow a_i + ci∈[l,r],ai←ai+c
- l,r,d l, r, dl,r,d,对于 i∈[l,r],ai←⌊ai/d⌋ i \in [l, r], a_i \leftarrow \lfloor {a_i}/{d} \rfloori∈[l,r],ai←⌊ai/d⌋
现在有一个外乡的旅客想要了解贸易市场的信息,有两种询问方式:
- 给定 l,r l, rl,r,求 mini∈[l,r]ai \min_{i \in [l, r]} a_imini∈[l,r]ai
- 给定 l,r l, rl,r,求 ∑i∈[l,r]ai \sum_{i\in [l, r]} a_i∑i∈[l,r]ai
输入
第一行为两个空格隔开的整数 n,q n, qn,q 分别表示商贩个数和政令 + 询问个数。
第二行包含 n nn 个由空格隔开的整数 a0∼an−1 a_0 \sim a_{n - 1}a0∼an−1
接下来 q qq 行,每行表示一个操作,第一个数表示操作编号 1∼4 1 \sim 41∼4,接下来的输入和问题描述一致。
输出
对于每个 3、4 操作,输出询问答案。
样例输入
10 10
-5 -4 -3 -2 -1 0 1 2 3 4
1 0 4 1
1 5 9 1
2 0 9 3
3 0 9
4 0 9
3 0 1
4 2 3
3 4 5
4 6 7
3 8 9
样例输出
-2
-2
-2
-2
0
1
1
提示
对于 30% 30\%30% 的数据,n,q≤103 n, q \leq 10 ^ 3n,q≤103;
对于 60% 60\%60% 的数据,保证数据随机;
对于 100% 100\%100% 的数据,1≤n,q≤105,0≤l≤r≤n−1,c∈[−104,104],d∈[2,109] 1 \leq n, q \leq 10 ^ 5, 0 \leq l \leq r \leq n - 1, c \in [-10 ^ {4}, 10 ^ 4], d \in [2, 10 ^ 9]1≤n,q≤105,0≤l≤r≤n−1,c∈[−104,104],d∈[2,109]
#include <bits/stdc++.h>
const int MAXN=1e5+10;
typedef long long intEx;
struct Node{
int l;
int r;
int max;
int min;
int add;
intEx sum;
Node* lch;
Node* rch;
Node(int,int);
void Add(int);
void PushDown();
void Maintain();
void Add(int,int,int);
void Div(int,int,int);
int QueryMin(int,int);
intEx QuerySum(int,int);
};
int n;
int q;
int a[MAXN];
int ReadInt();
inline int FDiv(int,int);
int main(){
n=ReadInt(),q=ReadInt();
for(int i=0;i<n;i++)
a[i]=ReadInt();
Node* N=new Node(0,n-1);
for(int i=0;i<q;i++){
int t=ReadInt(),l=ReadInt(),r=ReadInt();
if(t==1){
int d=ReadInt();
N->Add(l,r,d);
}
else if(t==2){
int d=ReadInt();
N->Div(l,r,d);
}
else if(t==3)
printf("%d\n",N->QueryMin(l,r));
else if(t==4)
printf("%lld\n",N->QuerySum(l,r));
}
return 0;
}
intEx Node::QuerySum(int l,int r){
if(l<=this->l&&this->r<=r)
return this->sum;
else{
this->PushDown();
if(r<=this->lch->r)
return this->lch->QuerySum(l,r);
if(this->rch->l<=l)
return this->rch->QuerySum(l,r);
return this->lch->QuerySum(l,r)+this->rch->QuerySum(l,r);
}
}
int Node::QueryMin(int l,int r){
if(l<=this->l&&this->r<=r)
return this->min;
else{
this->PushDown();
if(r<=this->lch->r)
return this->lch->QueryMin(l,r);
if(this->rch->l<=l)
return this->rch->QueryMin(l,r);
return std::min(this->lch->QueryMin(l,r),this->rch->QueryMin(l,r));
}
}
void Node::Add(int l,int r,int d){
if(l<=this->l&&this->r<=r)
this->Add(d);
else{
this->PushDown();
if(l<=this->lch->r)
this->lch->Add(l,r,d);
if(this->rch->l<=r)
this->rch->Add(l,r,d);
this->Maintain();
}
}
void Node::Div(int l,int r,int d){
if(l<=this->l&&this->r<=r){
if(this->max-FDiv(this->max,d)==this->min-FDiv(this->min,d))
this->Add(FDiv(this->max,d)-this->max);
else{
this->PushDown();
this->lch->Div(l,r,d);
this->rch->Div(l,r,d);
this->Maintain();
}
}
else{
this->PushDown();
if(l<=this->lch->r)
this->lch->Div(l,r,d);
if(this->rch->l<=r)
this->rch->Div(l,r,d);
this->Maintain();
}
}
inline void Node::Add(int d){
this->max+=d;
this->min+=d;
this->add+=d;
this->sum+=1ll*(this->r-this->l+1)*d;
}
inline void Node::Maintain(){
this->sum=this->lch->sum+this->rch->sum;
this->max=std::max(this->lch->max,this->rch->max);
this->min=std::min(this->lch->min,this->rch->min);
}
inline void Node::PushDown(){
if(this->add!=0){
this->lch->Add(this->add);
this->rch->Add(this->add);
this->add=0;
}
}
Node::Node(int l,int r):l(l),r(r),max(a[l]),min(a[r]),add(0),sum(a[l]),lch(NULL),rch(NULL){
if(l!=r){
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->Maintain();
}
}
inline int ReadInt(){
int x=0,sgn=1;
register char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')
sgn=-sgn;
ch=getchar();
}
while(isdigit(ch)){
x=x*10+ch-'0';
ch=getchar();
}
return x*sgn;
}
inline int FDiv(int x,int d){
if(x>=0)
return x/d;
else
return (x-d+1)/d;
}