LBM-IBM-DEM进阶之路4----Two-relaxation time (TRT) LBM 双松弛时间LBM(之1)

本节我们来看双松弛时间LBM,TRT LBM的执行方法。

双松弛时间(TRT)模型是对传统的单松弛时间(SRT)和多松弛时间(MRT)模型的一种改进。TRT的核心思想在于:

  • 松弛时间的分离:TRT模型将粒子分布函数分解为对称和反对称分量,并分别使用不同的松弛时间(\tau^+\tau^-)进行松弛。这种方法允许更精细地控制扩散和对流过程的数值稳定性和准确性。
  • 更高的数值稳定性:通过分别调节对称和反对称分量的松弛时间,TRT模型可以在保持高数值精度的同时,提高系统的数值稳定性。

1. 背景及初始化

TRT LBM中溶质的热力学状态由一个Q维粒子分布函数f_q(\mathbf{r}, t)定义,其中q=0,…,Q−1。该函数在每个格点(\mathbf{r})和每个离散时间(t)上定义。格点通过一组与格子轴和对角线对齐的离散速度\mathbf{c}_q​相互连接。对所有离散速度求和粒子分布得到溶质浓度C

C = \sum_{q=0}^{Q-1} f_q

在每个节点上,粒子分布函数可以分解为对称和反对称分量,

f_q = f_q^+ + f_q^-

其中,f_q^+ = \frac{f_q + f_{\bar{q}}}{2}f_q^- = \frac{f_q - f_{\bar{q}}}{2}

TRT LBM的物理解释:

  • 对称分量反映扩散:对称分量 f_q^+反映了粒子分布的平均行为,可以与经典的扩散现象相对应。
  • 反对称分量反映对流:反对称分量 f_q^-反映了粒子分布的偏移行为,可以与经典的对流现象相对应。

整数\bar{q}是指向\mathbf{c}_q​反方向的速度索引(\mathbf{c}_{\bar{q}} = -\mathbf{c}_q)​。

对于零速度的其余粒子(\mathbf{c}_0 = 0)f_0^+ = f_0 = C - \sum_{q=1}^{Q-1} f_qf_0^- = 0

为了简化对所有速度\mathbf{c}_q的求和,假设速度按以下顺序排列:

\bar{q} = q + \frac{(Q-1)}{2}1 \leq q \leq \frac{(Q-1)}{2},这里举例:对于D2Q5, 3 = 1 + (5-1)/2; 4 = 1 + (5-1)/2;

f_0^+ = C - 2 \sum_{q=1}^{(Q-1)/2} f_q^+


2. 碰撞迁移方程

一个节点上的粒子通过非零离散速度\mathbf{c}_q(\mathbf{c}_q \neq 0 \ldots, Q-1)移动到邻近节点,或者对于\mathbf{c}_0保持在节点上。一旦粒子到达邻近节点,结果分布通过TRT碰撞算子放松到平衡状态:

f_q(\mathbf{r} + \mathbf{c}_q, t + 1) = f_q(\mathbf{r}, t) - \frac{1}{\tau^+}(f_q^+ - e_q^+) - \frac{1}{\tau^-}(f_q^- - e_q^-)

其中e_q^+​和e_q^-​是平衡粒子分布的对称和反对称分量(e_q = e_q^+ + e_q^-)\tau^+\tau^-分别是对称和反对称松弛参数;f_q(\mathbf{r}, t)表示在时间 t时,位置\mathbf{r}处的粒子分布函数;\frac{1}{\tau^+}(f_q^+ - e_q^+)是对称分量的碰撞项,\frac{1}{\tau^-}(f_q^- - e_q^-)是反对称分量的碰撞项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值