本节我们来看双松弛时间LBM,TRT LBM的执行方法。
双松弛时间(TRT)模型是对传统的单松弛时间(SRT)和多松弛时间(MRT)模型的一种改进。TRT的核心思想在于:
- 松弛时间的分离:TRT模型将粒子分布函数分解为对称和反对称分量,并分别使用不同的松弛时间(
和
)进行松弛。这种方法允许更精细地控制扩散和对流过程的数值稳定性和准确性。
- 更高的数值稳定性:通过分别调节对称和反对称分量的松弛时间,TRT模型可以在保持高数值精度的同时,提高系统的数值稳定性。
1. 背景及初始化
TRT LBM中溶质的热力学状态由一个Q维粒子分布函数定义,其中q=0,…,Q−1。该函数在每个格点(
)和每个离散时间(
)上定义。格点通过一组与格子轴和对角线对齐的离散速度
相互连接。对所有离散速度求和粒子分布得到溶质浓度
:
在每个节点上,粒子分布函数可以分解为对称和反对称分量,
其中,,
TRT LBM的物理解释:
- 对称分量反映扩散:对称分量
反映了粒子分布的平均行为,可以与经典的扩散现象相对应。
- 反对称分量反映对流:反对称分量
反映了粒子分布的偏移行为,可以与经典的对流现象相对应。
整数是指向
反方向的速度索引
。
对于零速度的其余粒子,
,
为了简化对所有速度的求和,假设速度按以下顺序排列:
,
,这里举例:对于D2Q5, 3 = 1 + (5-1)/2; 4 = 1 + (5-1)/2;
2. 碰撞迁移方程
一个节点上的粒子通过非零离散速度移动到邻近节点,或者对于
保持在节点上。一旦粒子到达邻近节点,结果分布通过TRT碰撞算子放松到平衡状态:
其中和
是平衡粒子分布的对称和反对称分量
;
和
分别是对称和反对称松弛参数;
表示在时间
时,位置
处的粒子分布函数;
是对称分量的碰撞项,
是反对称分量的碰撞项。