LBM-IBM-DEM进阶之路4----Two-relaxation time (TRT) LBM 双松弛时间LBM(之1)

本节我们来看双松弛时间LBM,TRT LBM的执行方法。

双松弛时间(TRT)模型是对传统的单松弛时间(SRT)和多松弛时间(MRT)模型的一种改进。TRT的核心思想在于:

  • 松弛时间的分离:TRT模型将粒子分布函数分解为对称和反对称分量,并分别使用不同的松弛时间(\tau^+\tau^-)进行松弛。这种方法允许更精细地控制扩散和对流过程的数值稳定性和准确性。
  • 更高的数值稳定性:通过分别调节对称和反对称分量的松弛时间,TRT模型可以在保持高数值精度的同时,提高系统的数值稳定性。

1. 背景及初始化

TRT LBM中溶质的热力学状态由一个Q维粒子分布函数f_q(\mathbf{r}, t)定义,其中q=0,…,Q−1。该函数在每个格点(\mathbf{r})和每个离散时间(t)上定义。格点通过一组与格子轴和对角线对齐的离散速度\mathbf{c}_q​相互连接。对所有离散速度求和粒子分布得到溶质浓度C

C = \sum_{q=0}^{Q-1} f_q

在每个节点上,粒子分布函数可以分解为对称和反对称分量,

f_q = f_q^+ + f_q^-

其中,f_q^+ = \frac{f_q + f_{\bar{q}}}{2}f_q^- = \frac{f_q - f_{\bar{q}}}{2}

TRT LBM的物理解释:

  • 对称分量反映扩散:对称分量 f_q^+反映了粒子分布的平均行为,可以与经典的扩散现象相对应。
  • 反对称分量反映对流:反对称分量 f_q^-反映了粒子分布的偏移行为,可以与经典的对流现象相对应。

整数\bar{q}是指向\mathbf{c}_q​反方向的速度索引(\mathbf{c}_{\bar{q}} = -\mathbf{c}_q)​。

对于零速度的其余粒子(\mathbf{c}_0 = 0)f_0^+ = f_0 = C - \sum_{q=1}^{Q-1} f_qf_0^- = 0

为了简化对所有速度\mathbf{c}_q的求和,假设速度按以下顺序排列:

\bar{q} = q + \frac{(Q-1)}{2}1 \leq q \leq \frac{(Q-1)}{2},这里举例:对于D2Q5, 3 = 1 + (5-1)/2; 4 = 1 + (5-1)/2;

f_0^+ = C - 2 \sum_{q=1}^{(Q-1)/2} f_q^+


2. 碰撞迁移方程

一个节点上的粒子通过非零离散速度\mathbf{c}_q(\mathbf{c}_q \neq 0 \ldots, Q-1)移动到邻近节点,或者对于\mathbf{c}_0保持在节点上。一旦粒子到达邻近节点,结果分布通过TRT碰撞算子放松到平衡状态:

f_q(\mathbf{r} + \mathbf{c}_q, t + 1) = f_q(\mathbf{r}, t) - \frac{1}{\tau^+}(f_q^+ - e_q^+) - \frac{1}{\tau^-}(f_q^- - e_q^-)

其中e_q^+​和e_q^-​是平衡粒子分布的对称和反对称分量(e_q = e_q^+ + e_q^-)\tau^+\tau^-分别是对称和反对称松弛参数;f_q(\mathbf{r}, t)表示在时间 t时,位置\mathbf{r}处的粒子分布函数;\frac{1}{\tau^+}(f_q^+ - e_q^+)是对称分量的碰撞项,\frac{1}{\tau^-}(f_q^- - e_q^-)是反对称分量的碰撞项。\frac{1}{\tau^+}(f_q^+ - e_q^+) + \frac{1}{\tau^-}(f_q^- - e_q^-)为碰撞项,是粒子在碰撞过程中趋向于平衡态的变化量。将当前时刻的粒子分布函数减去对称和反对称分量的碰撞项,其目的是为了模拟流体中粒子在碰撞过程中的松弛效应,使其趋向于平衡态。

记上述迁移方程的整个右侧称为碰撞后粒子分布\tilde{f}_q(\mathbf{r}, t)


3. 平衡态的粒子分布函数

非零-离散速度的平衡粒子分布函数可表示为(Ginzburg, 2013)

平衡分布函数 e_q 分为对称分量 e_q^+和反对称分量 e_q^-,用来分别处理扩散和对流现象。

e_q^+ = C \left( t_q^{(m)} c_s^2 + t_q^{(u)} \mathbf{V}^2 + w_q^{(u)} \|\mathbf{c}_q\|^2 \sum_{\alpha=1}^{d} (V_\alpha^2 - \bar{V}^2)c_{q\alpha}^2 \right) + \sum_{\beta \neq \alpha} \frac{V_\alpha V_\beta c_{q\alpha} c_{q\beta}}{2 \sum_{j=1}^{(Q-1)/2} c_{j\alpha}^2 c_{j\beta}^2}

式中,

  • e_q^+:粒子分布函数的对称平衡分量。对称平衡分量主要反映了系统的扩散特性。
  • C:溶质浓度。
  • t_q^{(m)}:与质量相关的系数。
  • c_s^2:声速的平方。
  • t_q^{(u)}:与速度相关的系数。
  • \mathbf{V}^2:对流速度的平方。
  • w_q^{(u)}:与速度相关的权重系数。
  • \|\mathbf{c}_q\|^2:离散速度的平方。
  • V_\alpha:对流速度的第α\alphaα个分量。
  • \bar{V}^2:对流速度的均方值。
  • c_{q\alpha}:离散速度的第\alpha个分量。
  • d:维度。
  • \sum_{\beta \neq \alpha}:表示对所有不同于\alpha的分量进行求和。
  • \sum_{j=1}^{(Q-1)/2}:表示对前半部分速度的求和。

上式展示了如何计算对称平衡分量e_q^+,它综合了质量、速度和离散速度的各种影响因素。

e_q^- = t_q^{(a)} C \sum_{\alpha=1}^{d} V_\alpha c_{q\alpha}

式中,

  • e_q^-:这是粒子分布函数的反对称平衡分量。反对称平衡分量主要反映了系统的对流特性。
  • t_q^{(a)}:这是一个与对称性相关的系数。
  • C:这是溶质浓度。
  • \sum_{\alpha=1}^{d}:这表示对所有维度进行求和。
  • V_\alpha:这是对流速度的第\alpha个分量。
  • c_{q\alpha}:这是离散速度的第\alpha个分量。

上式展示了如何计算反对称平衡分量e_q^-,它主要依赖于对流速度和离散速度的分量。

上面两个式子中,t_q^{(m)}t_q^{(u)}t_q^{(a)}分别是与质量、速度和对称性相关的系数,w_q^{(u)}是与速度相关的权重系数,这些权重都是非负的并且都是各项同性的,满足各项同性的条件:

\sum_q w_q^{(\cdot)} c_{q\alpha} c_{q\beta} = \delta_{\alpha \beta}\sum_q t_q^{(\cdot)} c_{q\alpha} c_{q\beta} = \delta_{\alpha \beta}

其中\alpha, \beta = 1, \ldots, d。不同的权重选择会导致不同的数值稳定性(Ginzburg 等,2010)

\delta_{\alpha \beta}是克罗内克δ符号,它在 α = β 时为1,其他情况下为0。

另一半的平衡粒子分布(对于q = (Q-1)/2 + 1, \ldots, Q-1)可以通过对称和反对称关系计算:

粒子分布函数反方向\bar{q}的对称平衡分量 等于 粒子分布函数的对称平衡分量: e_{\bar{q}}^+ = e_q^+, 

这是因为在TRT模型中,对称分量表示的是粒子分布的均匀部分,它与方向无关。因此,对于反方向的速度 \bar{q},对称分量 e_{\bar{q}}^+​ 与原速度 q的对称分量 e_q^+​ 是相同的。

粒子分布函数反方向\bar{q}的反对称平衡分量 等于 粒子分布函数的反对称平衡分量的负数: e_{\bar{q}}^- = -e_q^-

这是因为反对称分量描述的是方向性特征,当速度方向取反时,这些特征也会反转。因此,对于反方向的速度 \bar{q},反对称分量 e_{\bar{q}}^-与原速度 q 的反对称分量 e_q^-的符号相反。

对于0方向的粒子e_0^+ = C - 2 \sum_{q=1}^{(Q-1)/2} e_q^+e_0^- = 0

将速度索引分为两个部分后,在计算某些量时可以减少求和的范围。例如,在计算平衡分量时,可以只对一半的速度索引进行求和,然后根据对称性得到另一半的结果。


4. TRT-LBM碰撞迁移总结

(1)初始化分布函数

在格子玻尔兹曼方法中,初始状态下的粒子分布函数 f_q(\mathbf{r}, 0)通常根据宏观物理量(如密度 \rho和速度 \mathbf{u})以及对称和反对称分量的平衡态分布函数 e_q^+ 和 e_q^- 来初始化。

非零方向:

e_q^+ = C \left( t_q^{(m)} c_s^2 + t_q^{(u)} \mathbf{V}^2 + w_q^{(u)} \|\mathbf{c}_q\|^2 \sum_{\alpha=1}^{d} (V_\alpha^2 - \bar{V}^2)c_{q\alpha}^2 \right) + \sum_{\beta \neq \alpha} \frac{V_\alpha V_\beta c_{q\alpha} c_{q\beta}}{2 \sum_{j=1}^{(Q-1)/2} c_{j\alpha}^2 c_{j\beta}^2}

e_q^- = t_q^{(a)} C \sum_{\alpha=1}^{d} V_\alpha c_{q\alpha}

零方向:e_0^+ = C - 2 \sum_{q=1}^{(Q-1)/2} e_q^+e_0^- = 0

请注意上面的e_q^+e_q^-的形式比较复杂,涉及到的参数比较多,文献中给定以下特例(对于D3Q15):

source: Yan et al., 2017

 在模拟中使用了具有15个离散速度的3D格子结构(D3Q15)。D3Q15模型中的离散速度可以描述为:

其中,\|\mathbf{c}_q\|^2 = 1\mathbf{c}_q被分类为I型速度,而\|\mathbf{c}_q\|^2 = 3\mathbf{c}_q被分类为II型速度。我们可以选择常用的“水动力学”各向同性权重(Ginzburg 等,2010)

对于I型速度: t_q^{(a)} = t_q^{(m)} = 1/3, \quad t_q^{(u)} = 0, \quad w_q^{(u)} = 1/2

对于II型速度: t_q^{(a)} = t_q^{(m)} = 1/24, \quad t_q^{(u)} = 1/8, \quad w_q^{(u)} = 0.

对于I型和II型速度,选择了c_s^2 = 3/8。因此,平衡分布变为:

e_q = \frac{1}{8} C + \frac{1}{3} C \mathbf{c}_q \cdot \mathbf{V} + \frac{1}{2} C (\mathbf{c}_q \cdot \mathbf{V})^2 - \frac{1}{6} C \mathbf{V} \cdot \mathbf{V}, \quad \mathbf{c}_q \in I

e_q = \frac{1}{64} C + \frac{1}{24} C \mathbf{c}_q \cdot \mathbf{V} + \frac{1}{16} C (\mathbf{c}_q \cdot \mathbf{V})^2 - \frac{1}{48} C \mathbf{V} \cdot \mathbf{V}, \quad \mathbf{c}_q \in II

e_q = \frac{1}{8} C - \frac{1}{3} C \mathbf{c}_q \cdot \mathbf{V}

f_q^+ = \frac{e_q + e_{\bar{q}}}{2} (请注意,对于上面这个特例,要注意找好方向的e_q, 如e_3(0,0,1) 和e_{10}(0,0,-1)是相反方向,都使用I型速度公式来计算;如e_4(1,1,1) 和e_{11}(-1,-1,-1)是相反方向,都使用II型速度公式来计算;

f_q^- = \frac{e_q - e_{\bar{q}}}{2}

初始化:f_q = f_q^+ + f_q^-

(2)碰撞过程

在每个时间步长内,粒子分布函数f_q​ 首先经历碰撞过程。碰撞过程按照TRT模型的碰撞算子进行更新:

\tilde{f}_q(\mathbf{r}, t) = f_q(\mathbf{r}, t) - \frac{1}{\tau^+}(f_q^+ - e_q^+) - \frac{1}{\tau^-}(f_q^- - e_q^-)

(3)迁移过程

在碰撞过程之后,粒子分布函数经历迁移过程,即从当前位置 \mathbf{r} 迁移到新的位置 \mathbf{r} + \mathbf{c}_q

f_q(\mathbf{r} + \mathbf{c}_q, t + 1) = \tilde{f}_q(\mathbf{r}, t)


5. 边界条件

为了使TRT方法尽可能简单,我们应用广泛使用的Standard bounce-back(SBB)边界条件:

f_{\bar{q}}(\mathbf{r}, t + 1) = \tilde{f}_q(\mathbf{r}, t)

  • 检测固体边界节点:遍历所有节点,识别出固体边界节点。
  • 反弹操作
    • 对于每个固体边界节点,检查哪些速度方向 q 指向边界。
    • 应用反弹回弹边界条件,将粒子反弹回边界节点。

如果存在质量源或汇(M),碰撞后粒子分布修改为:

\tilde{f}_q(\mathbf{r}, t) = \tilde{f}_q(\mathbf{r}, t) + t_q^{(m)} c_s^2 M, \quad q = 1, \ldots, Q-1

\tilde{f}_0(\mathbf{r}, t) = \tilde{f}_0(\mathbf{r}, t) + M \left( 1 - 2 c_s^2 \sum_{q=1}^{(Q-1)/2} t_q^{(m)} \right)

其中,右侧的\tilde{f}_q​定义在碰撞迁移方程中。这一修改使得TRT LBM能够模拟反应性传输
 


6. 宏观恢复

使用Chapman-Enskog展开,碰撞迁移方程的解接近以下无量纲反应对流扩散方程(ADE)的解(Ginzburg,2005a)

\frac{\partial C}{\partial T} + \nabla \cdot (\mathbf{V}C) = \hat{D} \nabla^2 C + M

其中,\hat{D}是无量纲扩散系数,\hat{D} = (\tau^- - 1/2)c_s^2。这个无量纲反应ADE可以从相应的有量纲反应ADE中推导出来:

\frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{uc}) = D \nabla^2 c + I

其中,c是溶质浓度(c = c_0),t是时间(t = T \Delta x / u_0)u是流动的对流速度(\mathbf{u} = u_0 \mathbf{V})D 是溶质的扩散系数D = \Delta x u_0 \hat{D}$I$是反应项(I = c_0 u_0 M / \Delta x)c_0, \Delta xu_0 是用于归一化有量纲ADE的特征值。

在TRT LBM应用于溶质的反应传输中,反对称松弛参数 \tau^- 由溶质的扩散系数决定,\tau^- = 1/2 + D / (c_s^2 \Delta x u_0),而对称松弛参数 \tau^+可以自由选择,但需满足 \tau^+ > 0.5

请注意如果将 \tau^+ 赋值与 \tau^- 相同的值,TRT方法将与SRT方法(Ginzburg, 2005a; Zou和He, 1997)一致。一个建议的取值方式是 \tau^+ = 1/2 + 1/(4\tau^- - 2),这来自于所谓的“magic”乘积((\tau^+ - 1/2)(\tau^- - 1/2) = 1/4),即已知 \tau^- 值可求\tau^+ 同时能保持良好的稳定性(Ginzburg等,2010)


7. 注意事项

请注意本次分享仅作为介绍TRT LBM方法的一个guide, 内容不够完整详细,其实这里面的水还是非常深的,大家看完应该感觉这里怎么这么多参数,这些参数如何来的?这些参数的具体值如何设置?

是的,LBM就是这样的,为了得到收敛性,我们不得不引入大量的参数来“制衡”和“修正”.

TRT LBM未完待续,将来博主会再次更新补充将这些疑惑,包括如何对于这些繁杂的公式进行编程。


参考文献

Yan, Zhifeng, et al. "Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport." Advances in water resources 109 (2017): 333-342.

Ginzburg, Irina. "Multiple anisotropic collisions for advection–diffusion Lattice Boltzmann schemes." Advances in water resources 51 (2013): 381-404.

Ginzburg, Irina, Dominique d’Humières, and Alexander Kuzmin. "Optimal stability of advection-diffusion lattice Boltzmann models with two relaxation times for positive/negative equilibrium." Journal of Statistical Physics 139 (2010): 1090-1143.

Ginzburg, Irina. "Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation." Advances in water resources 28.11 (2005): 1171-1195.

Zou, Qisu, and Xiaoyi He. "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model." Physics of fluids 9.6 (1997): 1591-1598.


如有错误,请评论区批评指正。

良心创作,转载请注明出处----CFD龙猫

  • 17
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值