Stable Diffusion WebUI从入门到精通(三)

第十一部分:图生图原理

** **

11.1 图生图的概念和基本逻辑

** **

*什么是图生图?*

图生图(Image-to-Image Translation)是一种计算机视觉技术,通过输入一张图像,让 AI 模型生成另一张基于输入图像的图像。这个过程通常涉及改变输入图像的风格、内容或特定特征,同时保持其整体结构。

基本逻辑

图生图技术主要基于生成对抗网络(GANs)和条件生成对抗网络(cGANs)。以下是基本逻辑:

  1. 输入图像:提供一张原始图像作为输入。

  2. 条件输入:输入图像的特定特征或附加描述,作为生成过程的条件。

  3. 生成模型:模型根据输入图像和条件,生成新的图像。

  4. 输出图像:生成的图像在保持原始结构的基础上,应用了新的特征或风格。

应用示例

  • 风格迁移:将输入图像转换为特定艺术风格,如将照片变成二次元风格。

    img

  • 图像修复:修复受损图像或填补缺失部分。

    img

  • 图像增强:提高图像分辨率或改善图像质量。

    img

1.2 图片作为信息传递给 AI 的意义

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

img

信息传递

有时,仅通过文字描述可能不足以完全传达你的需求。此时,提供参考图片或案例可以更直观地帮助 AI 理解你的需求。

在图生图任务中,输入图像不仅提供了视觉信息,还包含了很多隐含的信息,如颜色、纹理、形状等。AI 模型利用这些信息来理解和处理输入图像,从而生成符合预期的输出图像。

关键要素

  1. 内容:输入图像的主要对象和结构。

  2. 风格:图像的颜色、纹理和整体感觉。

  3. 细节:小的特征和细节,如边缘、阴影等。

步骤
  1. 寻找类似图片:在互联网上搜索与你想要生成的图像相似的图片。这些图片可以作为参考,帮助 AI 更好地理解你的需求。

  2. 标注关键要素:在参考图片上标注出你认为重要的元素,如颜色、构图、光照等。

  3. 结合文字描述:将参考图片与详细的文字描述结合起来,提供给 AI 作为输入。

** **

第十二部分:图生图流程

12.1 图生图的基本步骤

图生图(Image-to-Image Translation)是一种强大的技术,通过三步法可以轻松实现从一张图像到另一张图像的转换。以下是基本的三步流程:

第一步:准备输入图像

输入图像是图生图过程的基础,它提供了图像的基本结构和内容。

  1. 选择图像:选择一张清晰且符合需求的图像作为输入。

    img

  2. 图像预处理:如果输入图像质量不高,可以进行一些预处理,如去噪、调整亮度和对比度等。

    img

第二步:设置提示词和参数

提示词和参数决定了生成图像的风格和细节。合理的设置可以显著提升生成效果。

img

正向提示词:1man,light blue jersey,roar,blond,slicked-back hair,(masterpiece:1.2), best quality,masterpiece, highres, original, extremely detailed wallpaper, perfect lighting,(extremely detailed CG: 1.2),drawing,
反向提示词:NSFW,(worst quality:2),(low quality:2),(normal quality:2),lowres,normal quality,((monochrome)),((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(badproportions:1.331),extra limbs,(disfigured:1.331),(missingarms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extraarms and legs))),
  1. 提示词:简单描述你想要生成的图像特征,并加上我们之前学的标准化提示词。

    • 示例:

  2. 设置参数:根据具体需求调整参数。

    • 采样方法 (Sampler):如 DPM++ 2M, Euler a 等。(原理和文生图一样,参考第二课教程)

    • 调度类型 (Schedule Type):用于控制采样过程中各步长的调度方式。(原理和文生图一样,参考第二课教程)

    • 迭代步数 (Steps):一般设置为10-40,根据需要调整。(原理和文生图一样,参考第二课教程)

    • 提示词引导系数 (CFG Scale):设置为7-12,调整提示词对生成图像的影响程度。

    • 重绘幅度:它是一个非常重要的参数,它决定了生成的图像与原始输入图像之间的相似程度。

    • 重绘尺寸:重绘尺寸的大小不一定需要和原图一样,但比例建议和原图一致。

    • 细节修复(ADetailer):建议勾选启用人脸修复,可使出图时减少人脸的错误。

      img

第三步:生成和调整图像

在生成图像后,如果对于结果不满意,可以尝试调整重绘幅度和其他细节参数并多次生成图像,直到达到满意的效果。

img

12.2 提示词与参数的技术性解析

** **
提示词的构成和优化

提示词是生成图像的核心,其构成和优化对生成效果有重大影响。

  1. 关键元素:明确描述图像的主要元素和细节。

    • 主体:如“1man”,“1girl”。

    • 特征:如“blond”,“slicked-back hair”。

  2. 标准化提示词:用于控制图像整体质量和风格。

    • 示例:best quality,ultra-detailed,masterpiece,hires,8k

  3. 权重调整:使用括号和数字调整不同部分的权重,突出重要特征。

    • 示例:`(light blue jersey:1.3)```

提示词学习
  • outdoor/indoor:可以调整场景在室外/室内。

  • xxx in the background:可以在图片背景中添加想要生成的内容。

  • depth of field:景深(DOF)描述了图像中焦点清晰的区域范围,它指的是从前景到背景中清晰成像的范围。景深可以通过光圈大小、焦距和拍摄距离来控制。在AI图像生成中,景深是一个重要的提示词,可以用来模拟摄影效果,使生成的图像更具真实感和层次感。

例如:

浅景深:A portrait of a person with a shallow depth of field, the background is blurred.这将生成一个人像,背景模糊,突出人物的清晰度

img

深景深:A landscape with a deep depth of field, everything from the foreground to the background is in focus.这将生成一幅风景图,前景和背景都清晰可见。

img

部分参数的解析

合理的参数设置是生成高质量图像的关键。以下是一些重要参数的技术解析:

  1. *重绘尺寸*一般情况下,比例建议和原图一致。如果有改变尺寸的需要,可以选择“裁剪后缩放”、“缩放后填充空白”和“调整大小”。

  2. 重*绘*尺寸倍数:可以重绘后放大,可以参考其提示的尺寸改变具体结果值。

  3. 重绘幅度:

    低重绘幅度(例如10%-30%):生成的图像会保留大部分原始照片的细节,只是添加了一些绘画风格的纹理和颜色变化。

    中等重绘幅度(例如40%-70%):生成的图像会在保持原始照片的基本结构的同时,显著改变其细节和风格,使其更接近于一幅绘画。

    高重绘幅度(例如80%-100%):生成的图像会与原始照片有很大的不同,可能只保留基本轮廓,其余部分则完全被绘画风格覆盖。

第十三部分:随机数种子作用解析

** **

13.1 关于随机数种子

定义

随机数种子(Random Seed)是生成随机数的起始值。随机数生成器使用该种子值开始计算,确保每次生成的随机数序列一致。换句话说,如果使用相同的随机种子,随机数生成器将产生相同的随机数序列,从而在相同输入和相同参数下生成相同的图像。

作用
  1. 再现性:使用相同的随机数种子,可以再现相同的图像生成结果。这对于调试和结果验证非常有用。

    img

  2. 控制随机性:通过调整随机数种子,可以生成具有不同特征的图像。不同的种子会导致不同的随机数序列,从而生成不同的图像。

    img

13.2 借助随机数种子固定画面特征

固定特征

在图像生成过程中,通过设置固定的随机数种子,可以确保生成的图像具有一致的特征。这在以下几种情况下尤为重要:

  1. 批量生成:在批量生成多个图像时,使用固定的随机数种子可以确保每次生成的图像具有相同的特征,从而保持一致性。

  2. 调试和优化:在调试和优化生成模型时,使用相同的随机数种子可以帮助定位问题,并验证调整是否有效。

  3. 项目协作:在团队协作中,共享相同的随机数种子可以确保不同成员生成相同的图像,从而便于讨论和改进。

操作步骤

img

  1. 选择随机数种子:在生成工具中选择一个随机数种子,可以是任意整数。

    • 示例:设置随机数种子为 12345

  2. 设置生成参数:设置其他生成参数,如提示词、采样方法、步数等。

    • 示例:提示词为 A serene landscape with a lake and mountains.,采样方法为 DPM++ 2M

  3. 生成图像:使用设置好的参数生成图像。

    • 示例:生成一张湖泊和山脉的风景图。

  4. 验证一致性:多次生成图像,确保每次生成的图像一致。

    • 示例:

      多次生成的图像应该都包含相同的湖泊和山脉,并具有一致的风格和细节。

    13.3 使用随机数种子的实用技巧

    1. 保存和共享种子值:在生成满意的图像后,保存使用的随机种子值,以便日后再现相同的图像效果。

    2. 探索种子空间:尝试不同的随机数种子,探索可能生成的各种图像,发现更多有趣的效果。

    3. 固定种子进行测试:在进行参数调整和模型调试时,使用固定的随机数种子,确保其他变量不变,从而更精确地分析调整效果。

    通过合理使用随机数种子,可以在图像生成过程中实现再现性和一致性,提高图像生成的可控性和稳定性。这对调试、优化和协作具有重要意义。

    第十四部分 图生图的拓展应用

    在本部分中,我们将探索图像生成技术在不同应用领域的拓展和创新,包括“拟人化”物体、二次元人物的“三次元化”以及抽象派AI绘画法。

    14.1 利用图生图实现物体“拟人化”

    图生图技术可以通过生成带有拟人化特征的图像,使无生命的物体看起来更加生动和富有情感。这种技术可以应用于:

    • 品牌营销:通过拟人化的吉祥物设计来增加品牌的亲和力。

      img

    • 教育领域:使用拟人化图像来制作更有趣的教学素材,吸引学生的注意力。

      img

    • 娱乐产业:在动画和游戏中,利用拟人化的物体角色增加创意和趣味性。

      img

    • 静物拟人化:可通过更改提示词实现以静物的风格拟人化。

      img

    14.2 二次元人物真人化

    将二次元的动画角色转换为真人照片,可以在多个领域带来新的可能性:

    • 游戏开发:利用三次元化的角色模型,提升游戏画面的真实感和互动体验。

    • 影视制作:在电影和电视剧中,使用三次元化的动画角色进行特效制作。

    • 虚拟现实:通过三次元化的角色,使VR体验更加沉浸和生动。

    示例

    *输入一张动漫人物照片*

    img

    选择一个真人化大模型

    ** **

    img

    根据图片实际内容输入内容提示词+标准化提示词+反向提示词

    正向提示词:

    SFW,(1man, solo:1.2),young,black hair,curve hair,short hair,[tousled hair],flowing hair,(covered eyes:1.2),basketball,black wristband,red jersey,(handsome guy:1.2),(8k, RAW photo 1.2),cinematic lighting,night,best quality,ultra high res,(photorealistic 1.5),indoor,(simple background:1.2),depth of field,bloom,shine,(perfect light),cinematic lightning,light and shadow,dappled sunlight,light particles,winds,

    反向提示词:

    NSFW,(worst quality:2),(low quality:2),(normal quality:2),lowres,normal quality,((monochrome)),((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(badproportions:1.331),extra limbs,(disfigured:1.331),(missingarms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extraarms and legs))),

    设定与原图相同的重绘尺寸并勾选ADetailer面部修复

    img

    生成真人化照片

    ** **

    img

    14.3 AI手绘法

    AI手绘法可以运用任意画图工具通过AI生成画作,为艺术创作提供了新的可能性:

    • 示例

      选择任意绘图工具,通过鼠标或者手绘一些你希望生成的大致内容。

      img

      将图片上传至WebUI中,选择你需要的模型风格。

    img

    根据你希望呈现的图片内容输入内容提示词+标准化提示词+反向提示词

    正向提示词:

    mountains,clouds,river,beach,Boat(8k, RAW photo 1.2),cinematic lighting,night,best quality,ultra high res,(photorealistic 1.5),indoor,(simple background:1.2),depth of field,bloom,shine,(perfect light),cinematic lightning,light and shadow,dappled sunlight,light particles,winds,

    反向提示词:

    NSFW,(worst quality:2),(low quality:2),(normal quality:2),lowres,normal quality,((monochrome)),((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(badproportions:1.331),extra limbs,(disfigured:1.331),(missingarms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extraarms and legs))),

    设定与原图相同的图片尺寸及其他参数

    img

    生成图片

    img

    小结

    图生图技术的拓展应用不仅在艺术和创意领域有着广泛的前景,也在教育、娱乐和商业等多个行业展现出巨大的潜力。通过不断探索和创新,图像生成技术将为我们带来更多意想不到的惊喜和可能性。

    这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

    img

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值