量子计算论文精讲 | 图编辑距离近似解探究

本文探讨了图编辑距离(GED)在模式识别中的重要性,介绍了精确求解的困难以及A*搜索等算法的局限。着重讨论了近似求解策略,如转换为QAP问题的BP算法和QUBO方法,以及它们的优势和挑战。最后指出,未来的研究方向包括更有效的表示方法和深度学习在GED求解中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击查看原文

图片

内容简介

图表示能非常好的反映对象的属性与对象之间的关系,被广泛的应用在模式识别领域,而图匹配方法,作为实现图高效查询的重要方法之一被广泛的应用于生物信息学,图像分类,计算机网络等等领域。而图编辑距离(Graph Edit Distance,GED)是非常重要的图匹配问题,有良好得到容错率且可以应用于大量的图匹配相关领域之上。由于精确解GED问题的指数难度,越来越多的近似图编辑距离算法希望通过更快的时间来得到尽可能接近精确的图编辑距离。

相关论文1

标题:Approximate graph edit distance computation by means of bipartite graph matching
作者:Kaspar Riesen, Horst Bunke
期刊:Image and Vision computing, 2009, 27(7): 950-959

相关论文2

标题:Graph Edit Distance as a Quadratic Program
作者:S´ebastien Bougleux, Benoit Ga¨uz`ere,Luc Brun
期刊:  2016 23rd International Conference on Pattern Recognition (ICPR)

相关论文3

标题:A survey of graph edit distance

作者:Xinbo Gao, Bing Xiao, Dacheng Tao & Xuelong Li

期刊:  Pattern Analysis and applications, 2010, 13: 113-129

01 问题介绍

由于图可以很好的表示对象与对象之间的关系,图开始被大量使用在各个领域当中。而图匹配则是图数据识别的重要方法,其中基于图编辑距离(Graph Edit Distance,GED)的图匹配算法由于其拥有良好的容错率以及可以广泛的用于任意的图模型(如无向图,有向图,属性图,无属性图),在许多领域上均有应用。

图编辑距离问题是指从源图A通过一系列操作,最终得到目标图B所需要的最小代价,而操作集合以及每个操作的代价会随着问题的不同而调整。下图是一个图变化过程的实例,左上角的图为源图A,左下角的图为目标图B,图上的边的颜色代表边的属性,点的形状则代表点的属性,可用的操作有删边加边࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值