关注微信公众号"量子计算HiQ"查看更多论文分享和学术活动,投稿请联系小助手“LLT66TT”
内容简介
量子退火将优化问题编码为哈密顿量,使得在NISQ量子平台上求解真实世界的问题成为可能。为了在现有规模有限的量子计算硬件上实施更大规模量子计算实例,一种可行的方案是对哈密顿量进行约化、等效分解和确定部分构型。本文发展了不可分离群(non-separable group)理论,在此基础上提出FastHare算法,用于QUBO问题的预处理,在效果上比D-wave采用的roof-duality有了明显提升。
相关论文
标题:FastHare: Fast Hamiltonian Reduction for Large-scale Quantum Annealing
作者:Phuc Thai, My T. Thai, Tam Vu, Thang N. Dinh
会议: 2022 IEEE International Conference on Quantum Computing and Engineering (QCE)
01 理论模型
1. lsing模型和QUBO
通过 可以将(2阶)Ising问题等价地转化为QUBO问题。
2. Sherrington-Kirkpatrick (SK)
图1中为处理线性项,将等效编码成节点i与辅助节点a之间连边的权重, 是一个包含n+1节点的2阶齐次哈密顿量。由此可以将问题转化:
寻找原哈密顿量H的基态 ⇒ 寻找 的基态 ⇒ 寻找SK图G的最小割(weighted min-cut)
3. 不可分割群(non-separable group)
定义:将SK图记为G=(V,E,w),如果X⊆V中的节点在G的所有最小割中都处于同一侧,那么X称为一个不可分割群(简称NG);如果X⊆V中的节点在G的某些最小割中处于同一侧,那么X称为一个弱不可分割群(简称weak NG)。
性质:不可分割群满足交集和并集下的封闭性。
更多详细内容,请 点击查看原文
欢迎大家订阅“量子计算HiQ”,查看更多论文分享和学术活动信息