量子计算论文精讲《哈密顿量约化:QUBO问题预处理》

点击查看原文

关注微信公众号"量子计算HiQ"查看更多论文分享和学术活动,投稿请联系小助手“LLT66TT”

图片

内容简介

量子退火将优化问题编码为哈密顿量,使得在NISQ量子平台上求解真实世界的问题成为可能。为了在现有规模有限的量子计算硬件上实施更大规模量子计算实例,一种可行的方案是对哈密顿量进行约化、等效分解和确定部分构型。本文发展了不可分离群(non-separable group)理论,在此基础上提出FastHare算法,用于QUBO问题的预处理,在效果上比D-wave采用的roof-duality有了明显提升。

相关论文

标题:FastHare: Fast Hamiltonian Reduction for Large-scale Quantum Annealing
作者:Phuc Thai, My T. Thai, Tam Vu, Thang N. Dinh
会议: 2022 IEEE International Conference on Quantum Computing and Engineering (QCE)

01 理论模型

1. lsing模型和QUBO

图片

图片

通过 可以将(2阶)Ising问题等价地转化为QUBO问题。

2. Sherrington-Kirkpatrick (SK)

图1中为处理线性项,将等效编码成节点i与辅助节点a之间连边的权重,  是一个包含n+1节点的2阶齐次哈密顿量。由此可以将问题转化:

寻找原哈密顿量H的基态 ⇒ 寻找  的基态 ⇒ 寻找SK图G的最小割(weighted min-cut)

3. 不可分割群(non-separable group)

定义:将SK图记为G=(V,E,w),如果X⊆V中的节点在G的所有最小割中都处于同一侧,那么X称为一个不可分割群(简称NG);如果X⊆V中的节点在G的某些最小割中处于同一侧,那么X称为一个弱不可分割群(简称weak NG)。

性质:不可分割群满足交集和并集下的封闭性。

更多详细内容,请 点击查看原文

图片

欢迎大家订阅“量子计算HiQ”,查看更多论文分享和学术活动信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值