关注微信公众号"量子计算HiQ"查看更多论文分享和学术活动,投稿请联系小助手“LLT66TT”
内容简介
本次介绍的文章描述了⼀个⽤于完全正映射的图形演算,并在此过程中使⽤张量⽹络的语⾔回顾了开放量⼦系统的理论和量⼦信息理论的其他基本原语。文中展示了如何构建张量⽹络以图像化地表示Liouville超算⼦、Choi-矩阵、过程矩阵、Kraus 和系统-环境表示来描述量⼦态的演化,并说明了如何利⽤张量⽹络的图形操作来简洁地在它们之间进⾏转换。
相关论文
标题:Tensor networks and graphical calculus for open quantum systems
作者:Christopher J. Wood, Jacob D. Biamonte, David G. Cory
arXiv: 1111.6950
01 背景介绍
量子系统演化的完整描述是量子信息处理(QIP)中的重要工具。与封闭的量子系统相比,开放的量子系统的演化不再需要是幺正的。通常,开放量子系统的演化被称为量子操作或量子信道,对于离散的时间间隔,它在数学上由完全正映射(CP-map)描述。在QIP的背景下,量子信道是作用在描述物理系统状态的密度算符上的完全正线性映射。由于量子系统由密度算符描述,正算符具有单位迹,因此要求量子信道是完全正的并保持迹数,确保映射的输出状态将始终是有效的密度算符。这样的映射被称为完全正保迹映射(CPTP-maps)。
存在许多完全正映射的表示形式(包括Choi矩阵、超算子、Kraus、矩阵和Stinespring表示),尽管这些形式已经被深入理解,但是这些表示形式之间的转换通常都很繁琐和乏味。因此,本文的一个目标是提出并总结图形演算方法,这些方法有助于在这些表示形式之间进行直观的统一和互操作,其结果如图1所示。在此过程中,文章提供了关于CP-maps的属性和转换的简洁回顾。
图1(来源:arXiv: 1111.6950)
图形演算在现代物理学的多个领域得到了极大的应用,最典型的例子是使用费曼图来计算量子场理论中的散射振幅。在量子信息处理(QIP)的背景下,有人对使用比标准量子电路更通用的图形技术产生了兴趣,其中两种流行的方法是基于张量网络和范畴理论。这里提出的方法将开放量子系统的理论投入到张量网络的框架中,该框架配备了图形表示和推理张量序列收缩的方法。
02 张量网络和图演算
张量可以被认为是带有固定标准基的复数的多维索引数组。索引的数量称为张量的阶,同时评估所有索引会返回一个复数。例如,考虑希尔伯特空间 ,这在量子信息处理(QIP)中是典型的,我们选择我们的标准基为计算基
那么在狄拉克符号中一个向量 是一个一阶张量,可以用其张量分量
表示,相对于标准基。同样,人们可以用希尔伯特空间上的线性算符
表示为二阶张量,其组分
因此,在狄拉克符号中,张量的索引数量是我们所说的张量分量的阶。向量 指的是只有ket “” 基元素的张量,向量在对偶向量空间
指的是只有
的张量,而在
上的线性算符指的是具有ket和bra的分量分解的张量。
用图表表示状态、算符和映射(等等)的思想可以追溯到彭罗斯的多篇作品,通常被称为彭罗斯图形符号或弦图。我们采用彭罗斯的符号来表示状态(向量)和效应(对偶向量)为三角形,线性算符为盒子,而标量为菱形,如图2所示。这里每个索引对应于图中的一个开放线,因此我们可以用越来越多的线定义更高阶的张量。线的数量就是张量的阶,每条线作用于一个单独的向量空间 。
图2.1(来源:arXiv: 1111.6950)
更多详细内容,请 点击查看原文
欢迎大家订阅“量子计算HiQ”,查看更多论文分享和学术活动信息