信息学奥赛一本通 1374:铲雪车(snow)(同东方博宜OJ 2056. 铲雪车snow)

【题目描述】

随着白天越来越短夜晚越来越长,我们不得不考虑铲雪问题了。整个城市所有的道路都是双车道,因为城市预算的削减,整个城市只有1辆铲雪车。铲雪车只能把它开过的地方(车道)的雪铲干净,无论哪儿有雪,铲雪车都得从停放的地方出发,游历整个城市的街道。现在的问题是:最少要花多少时间去铲掉所有道路上的雪呢?

【输入】

输入数据的第1行表示铲雪车的停放坐标(x,y),x,y为整数,单位为米。下面最多有100行,每行给出了一条街道的起点坐标和终点坐标,所有街道都是笔直的,且都是双向一个车道。铲雪车可以在任意交叉口、或任何街道的末尾任意转向,包括转U型弯。铲雪车铲雪时前进速度为20 km/h,不铲雪时前进速度为50 km/h。

保证:铲雪车从起点一定可以到达任何街道。

【输出】

铲掉所有街道上的雪并且返回出发点的最短时间,精确到分种。

【输入样例】

0 0
0 0 10000 10000
5000 -10000 5000 10000
5000 10000 10000 10000

【输出样例】

3:55

【提示】

【注解】

3小时55分钟

时间限制: 1000 ms         内存限制: 65536 KB

这道题涉及到好几个数量关系式

1.d+=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));

2. double ans=d*2/1000/20;

3. long long h=(long long)(ans);

4. long long s=(long long)((ans-h)*60+0.5);

AC代码如下

#include<bits/stdc++.h>
using namespace std;
int main()
{
    long long n,m;
    long long x1,y1,x2,y2;
    double d=0;
    cin>>n>>m;
    while(scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2)!=EOF)
    {
       d+=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
    }
    double ans=d*2/1000/20;
    long long h=(long long)(ans);
    long long s=(long long)((ans-h)*60+0.5);
    printf("%lld:%02lld\n",h,s);
    return 0;
}

越难的题

标准代码反而越短

最后问个问题

有人知道我这文章封面图片是啥吗

知道的话

请发评论告诉我

### 解决方案 以下是基于 Floyd 算法信息学奥赛一本 OJ 平台 1421 题的 C++ 实现代码。此代码实现了多源最路径问题,能够正确处理带权重的有向图中的顶点间距离计算。 #### Floyd 算法核心逻辑 Floyd 算法过动态更新邻接矩阵的方式找到任意两点之间的最路径。其时间复杂度为 \(O(n^3)\),适用于较小规模的数据集[^2]。 ```cpp #include <iostream> #include <climits> // 使用 INT_MAX 表示无穷大 using namespace std; const int MAXN = 105; // 假设节点数量不超过 100 int dist[MAXN][MAXN]; // 邻接矩阵存储每一对节点的距离 void floyd(int n) { for (int k = 1; k <= n; ++k) { // 中介点 for (int i = 1; i <= n; ++i) { // 起始点 for (int j = 1; j <= n; ++j) { // 终点 if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX && dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; } } } } } int main() { int n, m; cin >> n >> m; // 输入节点数和边的数量 // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; // 自己到自己的距离为 0 else dist[i][j] = INT_MAX; // 初始状态表示不可达 } } // 输入边及其权重 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; // 边 (u,v) 的权重为 w dist[u][v] = min(dist[u][v], w); // 可能存在重边,取最小值 } // 执行 Floyd 算法 floyd(n); // 输出结果 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (dist[i][j] == INT_MAX) cout << "INF "; // 不可达的情况输出 INF else cout << dist[i][j] << ' '; } cout << endl; } return 0; } ``` 上述代码中,`floyd` 函数负责执行三重循环的核心部分,逐步更新 `dist` 数组以记录当前已知的最路径度。输入阶段需注意初始化以及可能存在的重复边情况。 --- ### 注意事项 - **数组初始化**:在使用前务必对二维数组进行初始化,防止未定义行为的发生。 - **边界条件**:当某些节点之间不存在路径时,应将其标记为 `INT_MAX` 或其他特殊值来表示不可达。 - **性能优化**:对于大规模数据,建议考虑更高效的单源或多源最路径算法(如 Dijkstra 或 SPFA),尽管它们的应用场景有所不[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值