一元二次方程标准形式: a x 2 + b x + c + 0 , a ≠ 0 ax^2+bx+c+0,a\ne0 ax2+bx+c+0,a=0
- 首先求判别式: Δ = b 2 − 4 a c \Delta=b^2-4ac Δ=b2−4ac
- 根据判别式了解根的存在情况: Δ { > 0 两个不相等实数根 = 0 两个相等的实数根 < 0 没有实数根 \Delta\begin{cases} \gt0\quad两个不相等实数根\\ =0\quad 两个相等的实数根\\ \lt0 \quad没有实数根 \end{cases} Δ⎩ ⎨ ⎧>0两个不相等实数根=0两个相等的实数根<0没有实数根
- 目前只考虑 D e l t a ≥ 0 Delta\ge0 Delta≥0
- 计算两个实数根: { x 1 = − b + b 2 − 4 a c 2 a x 2 = − b − b 2 − 4 a c 2 a \begin{cases} x_1=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a}\\ x_2=\displaystyle\frac{-b-\sqrt{b^2-4ac}}{2a} \end{cases} ⎩ ⎨ ⎧x1=2a−b+b2−4acx2=2a−b−b2−4ac
- 合成一个公式: x = b ± b 2 − 4 a c 2 a x=\displaystyle\frac{b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b2−4ac或 x = b ∓ b 2 − 4 a c 2 a x=\displaystyle\frac{b\mp\sqrt{b^2-4ac}}{2a} x=2ab∓b2−4ac
- \ne:not equal 不等于
- \gt:great than 大于
- \lt:less than 小于
- \ge:greater than or equal to 大于等于
- \frac:fraction 分数分式
- \pm:plus minus正负号
- \mp: minus plus 负正号