目录
(b)Worker:本节点任务调度,资源管理。默认占用该节点所有资源
spark的部署模式:Spark独立服务器模式、基于YARN的Spark、基于Mesos的Spark。
spark是什么?
Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。
目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。
spark的发展史
2009年,Spark诞生于伯克利大学的AMPLab实验室。最出Spark只是一个实验性的项目,代码量非常少,属于轻量级的框架。
2010年,伯克利大学正式开源了Spark项目。
2013年,Spark成为了Apache基金会下的项目,进入高速发展期。第三方开发者贡献了大量的代码,活跃度非常高。
2014年,Spark以飞快的速度称为了Apache的顶级项目。
2015年~,Spark在国内IT行业变得愈发火爆,大量的公司开始重点部署或者使用Spark来替代MapReduce、Hive、Storm等传统的大数据计算框架。
spark特点:
快速:

易用性:Spark支持使用Scala、Python、Java及R语言快速编写应用。同时Spark提供超过80个高阶算子,使得编写并行应用程序变得容易,并且可以在Scala、Python或R的交互模式下使用Spark。
通用性:Spark可以与SQL、Streaming及复杂的分析良好结合。Spark还有一系列的高级工具,包括Spark SQL、MLlib(机器学习库)、GraphX(图计算)和Spark Streaming(流计算),并且支持在一个应用中同时使用这些组件。
随处运行:用户可以使用Spark的独立集群模式运行Spark,也可以在EC2(亚马逊弹性计算云)、Hadoop YARN或者Apache Mesos上运行Spark。并且可以从HDFS、Cassandra、HBase、Hive、Tachyon和任何分布式文件系统读取数据。
兼容性
Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。
spark最大的特点:基于内存。
spark集群的体系结构
(1)结构
(a)Master:接收任务请求,分发任务
(b)Worker:本节点任务调度,资源管理。默认占用该节点所有资源
- Spark对内存没有很好管理,容易出现OOM。Spark把内存管理交给应用程序。
- Spark架构出现单点故障问题,通过HA解决。