自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 电商平台购买衣服预测:基于多种机器学习算法的实战分析

在电商领域,精准预测用户购买行为对于商家制定营销策略、优化库存管理等至关重要。本文拟详细介绍如何运用多种机器学习算法对电商平台购买衣服行为进行预测,内容涵盖数据探索、预处理、模型构建、评估及结果分析。

2025-04-29 19:55:46 1003

原创 使用 PyTorch 搭建 BP 神经网络进行客户流失预测

我们定义一个继承自nn.Module的BPNet类来构建 BP 神经网络。return out本文通过使用 PyTorch 搭建了一个简单的 BP 神经网络来进行客户流失预测,从数据准备、模型构建、训练优化到最终评估,完整地展示了整个流程。在实际应用中,可以进一步尝试调整模型结构、超参数(如隐藏层神经元数量、学习率、训练轮数等),或者对数据进行更精细的预处理(如特征工程、归一化等),来提升模型的性能。希望本文能为大家在使用 PyTorch 进行深度学习任务时提供一些参考和帮助。

2025-04-25 20:57:46 3610

原创 机器学习实战:PyTorch 与 Sklearn 线性回归模型大对决

在机器学习领域,模型的构建和训练依赖于各种工具和框架。PyTorch 和 Sklearn 作为其中的佼佼者,在实现线性回归模型时各有千秋。深入了解它们的差异和优势,对提升模型性能和开发效率意义重大。本文将全面剖析这两个框架在构建和训练线性回归模型方面的特点。 线性回归旨在寻找输入特征 X 与输出标签 y 的线性关系,通过公式y=Xθ+ϵ来描述 。其中,θ是待估参数,ϵ为随机噪声。训练的关键在于最小化预测值与真实值之间的均方误差(MSE),以此确定θ的最优值。 Sklearn(LinearRegressi

2025-04-23 23:10:04 4248

原创 Python 数据分析实战:学生成绩综合分析

通过以上步骤,我们完成了从数据读取、清洗、分析到可视化的全过程。利用pandas和matplotlib库,我们对学生成绩数据进行了全面深入的分析,通过各种图表直观地展示了数据特征和规律。这不仅帮助我们了解学生的学习情况,也为教育工作者提供了有价值的参考,以便做出更合理的教学决策。希望本文能对你在数据分析实践中有所帮助,大家可以根据实际需求进一步优化和扩展代码,探索更多有趣的数据信息。

2025-04-16 18:23:18 4583

原创 Kaggle 房价预测:从数据探索到模型构建全解析

我们从 Kaggle 平台获取了两个数据集:train.csv和test.csv。其中,train.csv包含了 1460 条房屋记录以及对应的销售价格(SalePrice),该数据集用于训练我们的预测模型;test.csv则包含了 1459 条房屋记录,但没有销售价格,用于我们提交预测结果。地理位置特征(街区)、LotFrontage(临街长度)、LotArea(土地面积)等。建筑结构特征(整体质量)、OverallCond(整体状况)、YearBuilt。

2025-04-13 13:44:03 4242 1

原创 基于电影评分的推荐系统实战:Python 实现与深度剖析

本次实验旨在掌握常用推荐算法,并运用 Python 构建推荐系统。核心算法为协同过滤算法,包括基于用户的协同过滤(UBCF)和基于物品的协同过滤(IBCF)。实验前,需学习这些算法的原理,可参考相关博客文章,如基于用户协同过滤算法的原理及代码实现,以及模型评估方法等。

2025-04-09 18:18:22 3766

原创 KNN 分类算法实现鸢尾花分类

鸢尾花数据集由著名统计学家 Fisher 收集整理,包含 150 个样本,分为三个类别:山鸢尾(Iris setosa)、变色鸢尾(Iris versicolor)和维吉尼亚鸢尾(Iris virginica),每个类别各 50 个样本。每个样本有四个特征:花萼长度(sepal length)、花萼宽度(sepal width)、花瓣长度(petal length)、花瓣宽度(petal width),单位为厘米。

2025-04-06 15:02:52 3907

原创 关于多种线性回归算法的效率比较

且一般来说,基于矩阵运算的方法(如numpy.linalg.lstsq、最小二乘矩阵运算)和sklearn的封装实现效率较高。线性回归算法‌是一种用于预测连续值的机器学习算法,它假设目标变量(y)和特征变量(x)之间存在线性关系,并试图找到一条最佳拟合直线来描述这种关系。首先是实验的思路,博主决定用随机random库随机生成一百条数据,然后用不同的方法对这些数据进行线性回归算法的实验,并用time模块进行计时用于比对效率。运行时间较短,效率较高,因内部实现经过优化,能快速处理线性回归计算。

2025-04-01 18:52:50 3424 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除