目录
一、传染病传播模型的两种时滞
传染病传播模型的时滞主要有两种。
一种是状态变量的时滞,主要是感染者的时滞,即易感者(S)在被感染之后,经过一段时间成为感染者(I),这段时间被称为感染时滞。该时滞类似于SEIR模型中对状态变量E(Exposed individuals)的考虑,区别在于:考虑感染时滞的SIS/SIR模型中,感染个体在感染时滞期间是具有传播性的;而SEIR模型中的感染个体一般是I,潜伏者(E个体)不具有传染性。
二是参数时滞,比如考虑隔离的传染病传播模型中,隔离措施在从下达命令到执行之间存在时间延迟,该延迟为隔离参数时滞,表示为u(t-tau)。
二、时滞微分方程的传染病传播模型均衡点求解
对于状态变量(尤其感染者)的时滞而言,时滞微分方程的传染病传播模型均衡点和不考虑时滞的微分方程的均衡点是一样的。
考虑系统稳定时,令时滞微分方程右端等于0,此时,t趋于无穷,t-τ趋于无穷,θ*(t-τ)≈θ*(t),稳定时的状态是和时滞无关的。
但是,感染者时滞是会影响S、I和R的演化曲线的,感染者时滞越小,传染病传播越快。
三、李雅普诺夫函数证明传染病传播模型均衡点的全局稳定性
构建李雅普诺夫函数V(t),证明李雅普诺夫函数式在定义域内室单调递减的,即dV(t)/dt<0;
借助Volterra函数:f(x)=x-1-lnx, f(1)=0为x>0的全局最小值,该函数在0<x<1区间是单调递减的;
x = S_k-S0_k-S0_k*ln(S_k/S0_k),通过证明李雅普诺夫函数的微分方程<=0来证明全局渐进稳定,凑基本再生数。