完全覆盖问题——分治解特殊棋盘填充

一、问题

在一个2^{n}×2^{n}方格组成的棋盘中,恰有一个特殊方格异质结填充覆盖,此事棋盘为一个特殊棋盘。用L型骨牌覆盖给的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。

二、解决

1、分析

用分治算法,将大棋盘划分为一个个小棋盘,比如4×4的棋盘,可以将其分成4个2×2的小棋盘,特殊方格所在的小棋盘很容易用L型骨牌填充。

那么通过填充骨牌使每一个小棋盘都包含一个特殊方格,其他地方就很容易填充。

2、代码书写

(1)用board_size表示棋盘大小,用tile标记特殊方格的编号

// 棋盘大小
int board_size;
// 用于标记特殊方格的编号
int tile = 1;

(2)定义函数chessBoard(),如果棋盘大小为1,直接返回。否则,将棋盘分成四个子棋盘,递归地解决每个子棋盘的覆盖问题。根据特殊方格的位置,在子棋盘中放置骨牌(标记为 tile ),并继续递归处理子棋盘。之后定义函数printBoard()输出覆盖后的棋盘。

// 函数声明
void chessBoard(int **board, int tr, int tc, int dr, int dc, int size);
void printBoard(int **board);


// 分治算法解决特殊棋盘覆盖问题
void chessBoard(int **board, int tr, int tc, int dr, int dc, int size) {
    if (size == 1) return;

    int t = tile++;
    int s = size / 2;

    // 左上角子棋盘
    if (dr < tr + s && dc < tc + s)
        chessBoard(board, tr, tc, dr, dc, s);
    else {
        board[tr + s - 1][tc + s - 1] = t;
        chessBoard(board, tr, tc, tr + s - 1, tc + s - 1, s);
    }

    // 右上角子棋盘
    if (dr < tr + s && dc >= tc + s)
        chessBoard(board, tr, tc + s, dr, dc, s);
    else {
        board[tr + s - 1][tc + s] = t;
        chessBoard(board, tr, tc + s, tr + s - 1, tc + s, s);
    }

    // 左下角子棋盘
    if (dr >= tr + s && dc < tc + s)
        chessBoard(board, tr + s, tc, dr, dc, s);
    else {
        board[tr + s][tc + s - 1] = t;
        chessBoard(board, tr + s, tc, tr + s, tc + s - 1, s);
    }

    // 右下角子棋盘
    if (dr >= tr + s && dc >= tc + s)
        chessBoard(board, tr + s, tc + s, dr, dc, s);
    else {
        board[tr + s][tc + s] = t;
        chessBoard(board, tr + s, tc + s, tr + s, tc + s, s);
    }
}

// 输出棋盘
void printBoard(int **board) {
    int size = 1 << board_size;
    for (int i = 0; i < size; i++) {
        for (int j = 0; j < size; j++) {
            printf("%d\t", board[i][j]);
        }
        printf("\n");
    }
}

(3)书写主函数

动态分配二维数组表示棋盘并将其初始化,输入棋盘大小及特殊方格坐标,进行函数调用,输出结果。

int main() {
    // 获取棋盘大小(2^n)
    printf("请输入棋盘大小(2^n):");
    scanf("%d", &board_size);

    // 计算棋盘的总方格数
    int size = 1 << board_size;

    // 动态分配二维数组来表示棋盘
    int **board = (int **)malloc(size * sizeof(int *));
    for (int i = 0; i < size; i++) {
        board[i] = (int *)malloc(size * sizeof(int));
    }

    // 初始化棋盘,所有方格初始化为0
    for (int i = 0; i < size; i++) {
        for (int j = 0; j < size; j++) {
            board[i][j] = 0;
        }
    }

    // 获取特殊方格的坐标
    int dr, dc;
    printf("请输入特殊方格的行坐标:");
    scanf("%d", &dr);
    printf("请输入特殊方格的列坐标:");
    scanf("%d", &dc);

    // 使用分治算法解决特殊棋盘覆盖问题
    chessBoard(board, 0, 0, dr, dc, size);

    // 输出结果
    printBoard(board);

    // 释放动态分配的二维数组内存
    for (int i = 0; i < size; i++) {
        free(board[i]);
    }
    free(board);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值