opencv+CNN算法实现实时数字识别(完整教程)

本文介绍了如何使用OpenCV和卷积神经网络构建一个实时数字识别系统,包括数据预处理、模型训练、验证和评估,以及在实际应用中的摄像头识别示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

前言

数字识别是计算机视觉领域中的一个重要任务,它涉及将输入的手写数字图像分类为特定的数字。实时数字识别具有广泛的应用,包括手写数字识别、自动识别信用卡号码等。本教程将介绍如何使用 OpenCV(Open Source Computer Vision Library)和卷积神经网络(Convolutional Neural Network,CNN)来实现实时数字识别。

OpenCV 是一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉算法,包括图像处理、特征检测、对象跟踪等功能。CNN 是一种深度学习模型,已被广泛用于图像识别任务,特别是在数字识别方面取得了很大的成功。

通过本教程,您将学习到如何利用 OpenCV 和 CNN 构建一个实时数字识别系统,并了解数字识别背后的基本原理和技术。希望本教程能够帮助您在实践中掌握图像处理和深度学习技术,为您的项目和研究提供帮助和启发

关于CNN的介绍

CNN笔记点此处

 

Python版本要求 : 3.6 3.7  其他自测。

 

我所安装的库 :

opencv 4.2.0.32

numpy 1.1.81

sklearn

keras 2.3.1

matplotlib 3.1.3

TensorFlow 2.0.0

训练模型

1.初始操作 

对数据集进行数量导出,并创建数组。

import cv2
import numpy as np
import os

##############################
path = 'myData'
images=[]
classNo=[]
##############################


myList = os.listdir(path)
print("总class:",len(myList))
noOfClasses = len(myList)
print('import class...')
for x in range(0,noOfClasses):
    myPiclist = os.listdir(path + '/' + str(x))
    for y in myPiclist:
        curImg = cv2.imread(path + '/' + str(x) + '/' + y)
        curImg = cv2.resize(curImg,(32,32))
        images.append(curImg)
        classNo.append(x)
    print(x,end=' ')
print('')
    #print(x)
#print(len(images))
#print(len(classNo))
images = np.array(images)
classNo = np.array(classNo)
print(images.shape) #(10160,32,32,3)

 2.将数据集分为 training testing validation

 添加库

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
numOfSamples=[]
testRatio = 0.2
valRatio = 0.2
X_train,X_test,Y_train,Y_test = train_test_split(images,classNo,test_size=testRatio)
X_train,X_validation,Y_train,Y_validation = train_test_split(X_train,Y_train,test_size= valRatio)
print(X_train.shape)
print(X_test.shape)
print(X_validation.shape)

for x in range (0,noOfClasses):
    #print(len(np.where(Y_train == x)[0]))
    numOfSamples.append(len(np.where(Y_train == x)[0]))
print(numOfSamples)

 用直方图plot出各个ID对应的图片数量

plt.figure(figsize=(10,5))
plt.bar(range(0,noOfClasses),numOfSamples )
plt.title('No of Images for e
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值