2025隐私计算实训营|第三课《可信隐私计算框架概览》学习笔记

一、隐语架构分层设计

隐语框架采用分层架构设计,兼顾开放性与安全性,各组件的功能定位如下:

1.硬件层:提供可信执行环境(TEE)支持,如Intel SGX2、海光CSV,通过硬件隔离保障数据计算安全。

2.资源层:通过Kuscia实现跨机构资源调度,整合密态引擎(SPU)与明文引擎(PYU SQL),并采用YACL密码库实现基础加密操作。

3.计算层:核心隐私计算能力层,支持联邦学习、PSI/PIR、SCQL多方安全分析等场景,兼容SEMI2k/ABY3/CHEETAH三种MPC协议。

4.算法层:提供HEU(同态加密)、TEEU(可信环境计算)、安全求交(PSI)等算法原语,支持黑盒/白盒混合调度。

5.产品层:通过SecretPad可视化平台与SCQL安全查询语言降低使用门槛,提供API/SDK对接企业系统。

二、核心组件技术要点

1.PSI/PIR协议模块

# PSI实现示例(ECDH协议)

from secretflow.security.psi import EcdhPsi

alice_data = ['A01', 'A02', 'A03']

bob_data = ['A02', 'A03', 'B04']

psi = EcdhPsi(curve_type='curve25519')

intersection = psi.psi(alice_data, bob_data, 'alice')  # 输出:['A02', 'A03']

PSI支持恶意模型(mini-PSI)与半诚实模型(KKRT16),PIR支持Label-PIR协议优化检索效率。

2.联邦学习与密态计算

# 隐语纵向联邦学习初始化

import secretflow as sf

sf.init(['alice', 'bob'], address='localhost')

alice = sf.PYU('alice')

bob = sf.PYU('bob')

# 数据加密对齐与联合建模

encrypted_data = alice(lambda df: df * 2)(local_data).to(bob)

model = sf.nn.VerticalNN(device_list=[alice, bob])

model.fit(encrypted_data, epochs=10)

3.SCQL安全协作查询

-- 多方数据联合统计(列级权限控制)

CREATE TABLE tb_credit (

    user_id STRING PARTKEY,

    score FLOAT ENC_OPTION(PRIVATE_KEY='bankA_key')

) PARTITIONED BY (bank);

SELECT AVG(score) FROM tb_credit

WHERE bank IN ('bankA', 'bankB')

WITH PRIVACY_OPTION(ADVERSARY='semi-honest');

支持MySQL语法与SEMI2k协议,实现多方数据密态聚合。

三、典型应用场景代码实践

1.医疗基因组联合分析(联邦学习)

# 使用Flower框架启动联邦服务器

import flwr as fl

strategy = fl.server.strategy.FedAvg(

    min_available_clients=3,

    eval_fn=model.evaluate

)

fl.server.start_server("[::]:8080", strategy=strategy)

各医院本地训练模型梯度加密上传,中心节点聚合更新。

2.金融反欺诈(同态加密)

# Paillier同态加密实现特征密态求和

from phe import paillier

pub_key, priv_key = paillier.generate_paillier_keypair()

encrypted_income = [pub_key.encrypt(x) for x in [5000, 8000]]

sum_encrypted = sum(encrypted_income)  # 密文直接相加

total = priv_key.decrypt(sum_encrypted)  # 解密得13000

四、架构特色与趋势

1.跨域管控:通过三权分置(数据持有权、使用权、经营权)实现数据流转审计,区块链记录全链路操作日志。

2.混合调度:支持RayFed分布式框架,实现跨机构任务编排:

# 启动RayFed集群

ray start --head --port=6379

rayfed init --parties alice,bob --address localhost:6379

3.性能优化:SPU密态引擎通过MLIR编译优化,将MPC协议计算耗时降低至明文2倍以内。

五、课程总结

隐语框架通过分层解耦设计实现隐私计算技术栈全覆盖,结合同态加密、TEE、联邦学习等技术路线,为金融、医疗等行业提供"数据可用不可见"的标准化解决方案。开发者可通过SecretFlow快速构建符合GDPR/《数据安全法》的业务系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值