一、隐语架构分层设计
隐语框架采用分层架构设计,兼顾开放性与安全性,各组件的功能定位如下:
1.硬件层:提供可信执行环境(TEE)支持,如Intel SGX2、海光CSV,通过硬件隔离保障数据计算安全。
2.资源层:通过Kuscia实现跨机构资源调度,整合密态引擎(SPU)与明文引擎(PYU SQL),并采用YACL密码库实现基础加密操作。
3.计算层:核心隐私计算能力层,支持联邦学习、PSI/PIR、SCQL多方安全分析等场景,兼容SEMI2k/ABY3/CHEETAH三种MPC协议。
4.算法层:提供HEU(同态加密)、TEEU(可信环境计算)、安全求交(PSI)等算法原语,支持黑盒/白盒混合调度。
5.产品层:通过SecretPad可视化平台与SCQL安全查询语言降低使用门槛,提供API/SDK对接企业系统。
二、核心组件技术要点
1.PSI/PIR协议模块
# PSI实现示例(ECDH协议)
from secretflow.security.psi import EcdhPsi
alice_data = ['A01', 'A02', 'A03']
bob_data = ['A02', 'A03', 'B04']
psi = EcdhPsi(curve_type='curve25519')
intersection = psi.psi(alice_data, bob_data, 'alice') # 输出:['A02', 'A03']
PSI支持恶意模型(mini-PSI)与半诚实模型(KKRT16),PIR支持Label-PIR协议优化检索效率。
2.联邦学习与密态计算
# 隐语纵向联邦学习初始化
import secretflow as sf
sf.init(['alice', 'bob'], address='localhost')
alice = sf.PYU('alice')
bob = sf.PYU('bob')
# 数据加密对齐与联合建模
encrypted_data = alice(lambda df: df * 2)(local_data).to(bob)
model = sf.nn.VerticalNN(device_list=[alice, bob])
model.fit(encrypted_data, epochs=10)
3.SCQL安全协作查询
-- 多方数据联合统计(列级权限控制)
CREATE TABLE tb_credit (
user_id STRING PARTKEY,
score FLOAT ENC_OPTION(PRIVATE_KEY='bankA_key')
) PARTITIONED BY (bank);
SELECT AVG(score) FROM tb_credit
WHERE bank IN ('bankA', 'bankB')
WITH PRIVACY_OPTION(ADVERSARY='semi-honest');
支持MySQL语法与SEMI2k协议,实现多方数据密态聚合。
三、典型应用场景代码实践
1.医疗基因组联合分析(联邦学习)
# 使用Flower框架启动联邦服务器
import flwr as fl
strategy = fl.server.strategy.FedAvg(
min_available_clients=3,
eval_fn=model.evaluate
)
fl.server.start_server("[::]:8080", strategy=strategy)
各医院本地训练模型梯度加密上传,中心节点聚合更新。
2.金融反欺诈(同态加密)
# Paillier同态加密实现特征密态求和
from phe import paillier
pub_key, priv_key = paillier.generate_paillier_keypair()
encrypted_income = [pub_key.encrypt(x) for x in [5000, 8000]]
sum_encrypted = sum(encrypted_income) # 密文直接相加
total = priv_key.decrypt(sum_encrypted) # 解密得13000
四、架构特色与趋势
1.跨域管控:通过三权分置(数据持有权、使用权、经营权)实现数据流转审计,区块链记录全链路操作日志。
2.混合调度:支持RayFed分布式框架,实现跨机构任务编排:
# 启动RayFed集群
ray start --head --port=6379
rayfed init --parties alice,bob --address localhost:6379
3.性能优化:SPU密态引擎通过MLIR编译优化,将MPC协议计算耗时降低至明文2倍以内。
五、课程总结
隐语框架通过分层解耦设计实现隐私计算技术栈全覆盖,结合同态加密、TEE、联邦学习等技术路线,为金融、医疗等行业提供"数据可用不可见"的标准化解决方案。开发者可通过SecretFlow快速构建符合GDPR/《数据安全法》的业务系统。