注意力机制机器翻译

机器翻译(Machine Translation, MT)是利用计算机软件将一种自然语言翻译成另一种自然语言的过程。随着全球化的推进和跨文化交流的增加,机器翻译的重要性日益凸显。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

注意力机制学习参考文档:https://zh.d2l.ai/chapter_attention-mechanisms/index.html

读取和预处理数据

我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。由于该实验需要用到pytorch,对于遇到的困难可在下面文档中查询解决方法。

PyTorch官方文档https://pytorch.org/docs/2.0/;

PyTorch官方论坛http://https://discuss.pytorch.org/

# 使用tar命令解压d2lzh_pytorch.tar文件
# -x: 提取文件
# -f: 指定要处理的文件名
!tar -xf d2lzh_pytorch.tar
import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l

# 定义常量PAD、BOS、EOS,分别表示填充、开始和结束
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
# 设置环境变量,指定使用的GPU设备编号
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 根据当前设备是否支持CUDA,选择使用CPU或GPU进行计算
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 打印PyTorch版本和使用的计算设备
print(torch.__version__, device)

 

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

 含注意力机制的编码器—解码器

我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。

编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。正如我们在6.5节(循环神经网络的简洁实现)中提到的,PyTorch的nn.GRU实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

注意力机制

我们将实现1注意力机制中定义的函数𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎定义里向量𝑣的长度是一个超参数,即attention_size

# 定义注意力模型函数,接收输入大小和注意力大小作为参数
def attention_model(input_size, attention_size):
    # 使用PyTorch的Sequential模块创建一个线性层、双曲正切激活函数和另一个线性层的序列模型
    model = nn.Sequential(
        # 第一个线性层,输入大小为input_size,输出大小为attention_size,不使用偏置项
        nn.Linear(input_size, attention_size, bias=False),
        # 添加双曲正切激活函数
        nn.Tanh(),
        # 第二个线性层,输入大小为attention_size,输出大小为1,不使用偏置项
        nn.Linear(attention_size, 1, bias=False)
    )
    # 返回创建的注意力模型
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

# 设置序列长度、批量大小和隐藏层数量
seq_len, batch_size, num_hiddens = 10, 4, 8

# 创建一个注意力模型,输入维度为2倍的隐藏层数量,输出维度为10
model = attention_model(2*num_hiddens, 10)

# 初始化编码器状态,形状为(序列长度, 批量大小, 隐藏层数量)
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))

# 初始化解码器状态,形状为(批量大小, 隐藏层数量)
dec_state = torch.zeros((batch_size, num_hiddens))

# 调用注意力前向传播函数,传入模型、编码器状态和解码器状态,返回结果的形状
attention_forward(model, enc_states, dec_state).shape

含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        # 初始化嵌入层
        self.embedding = nn.Embedding(vocab_size, embed_size)
        # 初始化注意力模型
        self.attention = attention_model(2*num_hiddens, attention_size)
        # 初始化GRU,输入尺寸为num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        # 初始化输出层
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

训练模型

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,同10.3节(word2vec的实现)中的实现一样,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

# 定义训练函数,输入参数为编码器、解码器、数据集、学习率、批量大小和迭代次数
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 初始化编码器和解码器的优化器,使用Adam优化算法,学习率为传入的lr
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 初始化损失函数,使用交叉熵损失,不进行求和操作
    loss = nn.CrossEntropyLoss(reduction='none')
    # 初始化数据迭代器,使用传入的数据集、批量大小和打乱顺序
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    # 进行num_epochs次迭代
    for epoch in range(num_epochs):
        # 初始化损失值累加器
        l_sum = 0.0
        # 遍历数据迭代器中的每个批次
        for X, Y in data_iter:
            # 清空优化器的梯度
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            # 计算当前批次的损失值
            l = batch_loss(encoder, decoder, X, Y, loss)
            # 反向传播计算梯度
            l.backward()
            # 更新编码器和解码器的参数
            enc_optimizer.step()
            dec_optimizer.step()
            # 累加损失值
            l_sum += l.item()
        # 每10个迭代周期打印一次损失值信息
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

# 设置嵌入层大小、隐藏层大小和层数
embed_size, num_hiddens, num_layers = 64, 64, 2
# 设置注意力机制的大小、丢弃概率、学习率、批量大小和训练轮数
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50

# 创建编码器实例,输入词汇表大小、嵌入层大小、隐藏层大小、层数和丢弃概率
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)

# 创建解码器实例,输出词汇表大小、嵌入层大小、隐藏层大小、层数、注意力机制大小和丢弃概率
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)

# 使用编码器、解码器、数据集、学习率、批量大小和训练轮数进行训练
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

预测不定长的序列

在束搜索中我们介绍了3种方法来生成解码器在每个时间步的输出。这里我们实现最简单的贪婪搜索。

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列按空格分割成单词列表
    in_tokens = input_seq.split(' ')
    # 在输入序列后面添加EOS和PAD,使得序列长度达到max_seq_len
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将输入序列转换为张量,并使用输入词汇表将其转换为整数索引
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    # 初始化编码器状态
    enc_state = encoder.begin_state()
    # 对输入序列进行编码,得到编码器的输出和状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器输入为BOS对应的整数索引
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    # 使用编码器的状态初始化解码器状态
    dec_state = decoder.begin_state(enc_state)
    # 初始化输出序列
    output_tokens = []
    # 对于每个时间步
    for _ in range(max_seq_len):
        # 使用解码器、当前解码器输入和解码器状态进行解码,得到解码器的输出和状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        # 获取解码器输出中概率最大的预测结果的索引
        pred = dec_output.argmax(dim=1)
        # 将预测结果的索引转换为对应的单词
        pred_token = out_vocab.itos[int(pred.item())]
        # 如果预测结果为EOS,则结束输出序列的生成
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            # 将预测结果添加到输出序列中
            output_tokens.append(pred_token)
            # 将预测结果作为下一个解码器输入
            dec_input = pred
    # 返回输出序列
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

# 定义输入序列,这是一个法语句子
input_seq = 'ils regardent .'

# 调用翻译函数,将输入序列翻译成英文
translate(encoder, decoder, input_seq, max_seq_len)

评价翻译结果 

def bleu(pred_tokens, label_tokens, k):
    # 计算预测序列和标签序列的长度
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    # 计算长度惩罚因子
    score = math.exp(min(0, 1 - len_label / len_pred))
    # 遍历n-gram范围
    for n in range(1, k + 1):
        # 初始化匹配数量和标签子串计数器
        num_matches, label_subs = 0, collections.defaultdict(int)
        # 统计标签序列中n-gram子串出现的次数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        # 遍历预测序列,检查是否与标签子串匹配
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        # 更新分数
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    return score

接下来,定义一个辅助打印函数。

# 定义一个名为score的函数,接收三个参数:input_seq(输入序列),label_seq(标签序列)和k(用于计算BLEU分数的n-gram值)
def score(input_seq, label_seq, k):
    # 使用translate函数将输入序列翻译成预测的tokens
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    # 将标签序列按空格分割成tokens
    label_tokens = label_seq.split(' ')
    # 打印BLEU分数和预测的tokens
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测正确则分数为1。

score('ils regardent .', 'they are watching .', k=2)

score('ils sont canadienne .', 'they are canadian .', k=2)

通过结果我们不难看出翻译结果又一些准确的,但仍然需要改进。

试着使用更大的翻译数据集来训练模型,例如 WMT

import torch
from torch.utils.data import Dataset
from torchtext.datasets import WMT14  # Assuming you use torchtext to load WMT dataset
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import DataLoader
 
class TranslationDataset(Dataset):
    def __init__(self, src_lang, tgt_lang, max_length=None):
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang
        self.max_length = max_length
 
        # Load dataset using torchtext
        train_dataset, val_dataset, test_dataset = WMT14.splits(
            exts=(f'.{src_lang}', f'.{tgt_lang}'), fields=(None, None)
        )
 
        # Tokenization function
        self.tokenizer = get_tokenizer(f'basic_{src_lang}_tokenizer')
 
        # Build vocabularies
        self.src_vocab = build_vocab_from_iterator(map(self.tokenizer, train_dataset), specials=['<unk>', '<pad>', '<bos>', '<eos>'])
        self.tgt_vocab = build_vocab_from_iterator(map(self.tokenizer, train_dataset), specials=['<unk>', '<pad>', '<bos>', '<eos>'])
 
        # Convert dataset to list of (source, target) pairs
        self.data = [(src, tgt) for src, tgt in zip(train_dataset, val_dataset)]
 
    def __len__(self):
        return len(self.data)
 
    def __getitem__(self, idx):
        src, tgt = self.data[idx]
 
        # Tokenize and numericalize source and target sequences
        src_tokens = self.tokenizer(src)[:self.max_length]
        tgt_tokens = self.tokenizer(tgt)[:self.max_length]
 
        # Add BOS and EOS tokens
        src_tokens = [self.src_vocab['<bos>']] + [self.src_vocab[token] for token in src_tokens] + [self.src_vocab['<eos>']]
        tgt_tokens = [self.tgt_vocab['<bos>']] + [self.tgt_vocab[token] for token in tgt_tokens] + [self.tgt_vocab['<eos>']]
 
        # Pad sequences to the same length
        src_padding_length = self.max_length + 2 - len(src_tokens)  # +2 for BOS and EOS
        tgt_padding_length = self.max_length + 2 - len(tgt_tokens)  # +2 for BOS and EOS
 
        src_tokens += [self.src_vocab['<pad>']] * src_padding_length
        tgt_tokens += [self.tgt_vocab['<pad>']] * tgt_padding_length
 
        return torch.tensor(src_tokens), torch.tensor(tgt_tokens)
 
 
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
 
    loss = nn.CrossEntropyLoss(reduction='none')
    data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
 
    for epoch in range(num_epochs):
        l_sum = 0.0
        for X, Y in data_loader:
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            l = batch_loss(encoder, decoder, X, Y, loss)
            l.backward()
            enc_optimizer.step()
            dec_optimizer.step()
            l_sum += l.item()
 
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_loader)))
            
            
            
embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

  • 36
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值