- 博客(15)
- 收藏
- 关注
原创 【无标题】
9. 开放性问题:手机上有一个卡片,可能会推用户常用的app,也可能是信息流,也有可能视频、音乐,你会如何建模这个问题?14.对于多任务模型(如MMoE/PLE)在实践中经常会遇到需要增加任务的情况,如何热启的?注意力机制根据输入的特征信息来确定哪些部分更重要,与位置无关,而全连接里的权重是根据位置固定的。6.介绍一下AUC的物理意义,如果在现在基础上,再增加一批全全负样本,AUC值如何变化?dropout是如何保证训练和预测的一致性的?8. 传统的nlp的模型和深度学习nlp模型本质的区别是?
2024-09-29 23:10:03
739
1
原创 GNN面试题
你使用的graphsage负样本怎么做的,一阶二阶采样多少个邻居,采用什么聚合策略。为什么使用graphsage,模型不同部分的作用 graphsage有什么优点。graphsage 邻居采样数目怎么确定,对于不同大小的图,有没有公式可以参考。根据推荐里面的item2vec,讲一下word2vec模型,为什么lstm可以解决梯度消失问题,从理论的角度上解释。GCN每一层的操作,为什么乘以D^-/2, D是什么。auc实际衡量的什么,auc适合于什么情况。word2vec里面的负采样是怎么做的。
2024-08-03 01:30:14
511
原创 Java刷题基础语法
浮点类型的数就是小数,因为小数用科学计数法表示的时候,小数点是可以“浮动”的,如1234.5可以表示成12.345x102,也可以表示成1.2345x103,所以称为浮点数。虽然可以使用 + 直接拼接字符串,但是,在循环中,每次循环都会创建新的字符串对象,然后扔掉旧的字符串。对于整型类型,Java只定义了带符号的整型,因此,最高位的bit表示符号位(0表示正数,1表示负数)。在转型时,浮点数的小数部分会被丢掉。在计算机中,浮点数虽然表示的范围大,但是,浮点数有个非常重要的特点,就是浮点数常常无法精确表示。
2024-07-05 01:12:23
1065
原创 预训练语言模型笔记
在图片分类任务中,常使用(Convolutional Neural Network,CNN)网络,对于由多个层级结构组成的CNN来说,不同层学到的图像特征是不一样的,越浅的层学到的特征越通用,越深的层学到的特征和其体任务的关联性越强。语言模型:给定一句由n个词组成的句子W=w1,W2,......,wn,计算这个子的概率P(w1,W2,...,wn),或者根据前文计算下一个词的概率P(wn/w1,W1,W2..,wn-1)的模型。从机器学习的角度看,语言模型是对语句的概率分布的建模。
2024-05-26 11:54:05
1336
原创 刷题基础语法
这种小写字母的关键字。还有一个重要的问题就是字符串的相等性比较,这个问题涉及语言特性,简单说就是一定要用字符串的。关键词申明自己实现了接口中的所有方法,那么就可以用这个接口的类型来接收这个类的实例化对象。对于头部和尾部元素的操作,因为底层数据结构为链表,直接操作头尾的元素效率较高。要求存入其中的键必须是「可比较的」,即对于任意两个键,必须能够知道它俩谁大谁小。我们在实现自己的数据结构类时,也需要使用泛型,以便我们的数据结构能够装任何类型。数组,如果涉及到比较复杂的操作,用起来比较麻烦,所以我们更多地使用。
2024-05-03 21:04:43
901
原创 刷题技巧
但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);学完基本算法之后,建议从「二叉树」系列问题开始刷,结合框架思维,把树结构理解到位,然后再去看回溯、动规、分治等算法专题,对思路的理解就会更加深刻。如何遍历 + 访问?数据结构的基本存储方式就是链式和顺序两种,基本操作就是增删查改,遍历方式无非迭代和递归。数据结构种类很多,甚至你也可以发明自己的数据结构,但是底层存储无非数组或者链表,话说这不就是数据结构的使命么?
2024-04-29 00:42:50
232
原创 剑指offer题解--Python
对于负数,最高位为1,而负数在计算机是以补码存在的,往右移,符号位不变,符号位1往右移,最终可能会出现全1的情况,导致死循环。如果直接从上向下计算树的深度,判断是否满足平衡二叉树的定义,会多次重复遍历下层结点,增加了不必要的开销。因为f(n-1)=f(n-2)+f(n-3)+...+f(1)所以f(n)=f(n-1)+f(n-2)+...+f(1)因为n级台阶,第一步有n种跳法:跳1级、跳2级、到跳n级。跳1级,剩下n-1级,则剩下跳法是f(n-1)跳2级,剩下n-2级,则剩下跳法是f(n-2)
2024-04-09 09:37:37
823
原创 互联网公司
算法包含但不限于:向量检索技术、基于树、图、量化、聚类等的各类检索方案、图神经网络、深度表示学习、对比学习、样本增强、集成学习、learning to rank、多任务学习、强化学习、迁移学习、模拟器等。3、熟悉Linux系统,熟练使用Java/C++/Python其中任一编程语言,有TF/Hadoop/Spark/等大数数据和机器学习平台经验;2、业务思维强,具备优秀的发现问题、分析问题和解决问题的能力,对解决具有挑战性问题充满激情;5、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神。
2024-03-31 17:38:49
731
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人