传统机器学习问题

  • Adaboost拟合目标是什么
  • Adaboost介绍一下,每个基学习器的权重怎么得到的
  • 介绍下GBDT
  • 介绍XGBoost
  • 介绍下LightGBM
  • LightGBM相对于XGBoost的改进
  • GBDT中的梯度是什么,怎么用
  • GBDT如何计算特征重要性
  • GBDT讲一下,GBDT拟合残差,是真实的误差嘛,在什么情况下看做是真实的误差
  • 介绍XGBoost中的并行
  • 介绍XGBoost中精确算法与近似算法
  • XGBoost如何处理空缺值,为何要进行行采样、列采样
  • 讲一下xgboost算法,xgboost是如何处理离散特征的,xgb怎么训练,xgb算法优点,怎么选特征,主要参数有哪些,xgb的特征重要性怎么看
  • xgboost介绍一下,xgb对目标函数二阶泰勒展开,哪个是x,哪个是delta x, 一阶导和二阶导是对谁求得
  • 随机森林与GBDT采样的区别
  • 随机森林中列采样的作用
  • bagging与boosting对比, boosting和bagging的区别及分别适用于什么场景
  • bagging与boosting分别从什么角度降低过拟合
  • 随机森林采样n次,n趋于无穷大,oob样本的概率接近于?
  • 树模型一般有哪些参数,分别有什么作用
  • 随机森林如何处理空缺值
  • 决策树有哪些划分指标?区别与联系?
  • 集成学习的分类?有什么代表性的模型和方法?
  • 如何从偏差和方差的角度解释bagging和boosting的原理?
  • GBDT的原理?和Xgboost的区别联系?
  • adaboost和gbdt的区别联系?
  • 树模型如何调参
  • 树模型如何剪枝?
  • Bagging和Boosting的区别

  • 介绍XGBoost

  • RF,Adaboost, xgboost的区别

  • 有哪些无监督学习的方法(kmeans,pca,生成模型,自编码器)
  • 有哪些回归模型(多项式回归,树模型,svr, 神经网络)
  • 生成模型、判别模型的区别
  • 朴素贝叶斯介绍,朴素贝叶斯公式,为什么朴素
  • 降维方法了解嘛,PCA? 为什么取特征值前k大的对应的特征向量组成的矩阵?低秩表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值