- Adaboost拟合目标是什么
- Adaboost介绍一下,每个基学习器的权重怎么得到的
- 介绍下GBDT
- 介绍XGBoost
- 介绍下LightGBM
- LightGBM相对于XGBoost的改进
- GBDT中的梯度是什么,怎么用
- GBDT如何计算特征重要性
- GBDT讲一下,GBDT拟合残差,是真实的误差嘛,在什么情况下看做是真实的误差
- 介绍XGBoost中的并行
- 介绍XGBoost中精确算法与近似算法
- XGBoost如何处理空缺值,为何要进行行采样、列采样
- 讲一下xgboost算法,xgboost是如何处理离散特征的,xgb怎么训练,xgb算法优点,怎么选特征,主要参数有哪些,xgb的特征重要性怎么看
- xgboost介绍一下,xgb对目标函数二阶泰勒展开,哪个是x,哪个是delta x, 一阶导和二阶导是对谁求得
- 随机森林与GBDT采样的区别
- 随机森林中列采样的作用
- bagging与boosting对比, boosting和bagging的区别及分别适用于什么场景
- bagging与boosting分别从什么角度降低过拟合
- 随机森林采样n次,n趋于无穷大,oob样本的概率接近于?
- 树模型一般有哪些参数,分别有什么作用
- 随机森林如何处理空缺值
- 决策树有哪些划分指标?区别与联系?
- 集成学习的分类?有什么代表性的模型和方法?
- 如何从偏差和方差的角度解释bagging和boosting的原理?
- GBDT的原理?和Xgboost的区别联系?
- adaboost和gbdt的区别联系?
- 树模型如何调参
- 树模型如何剪枝?
-
Bagging和Boosting的区别
-
介绍XGBoost
-
RF,Adaboost, xgboost的区别
- 有哪些无监督学习的方法(kmeans,pca,生成模型,自编码器)
- 有哪些回归模型(多项式回归,树模型,svr, 神经网络)
- 生成模型、判别模型的区别
- 朴素贝叶斯介绍,朴素贝叶斯公式,为什么朴素
- 降维方法了解嘛,PCA? 为什么取特征值前k大的对应的特征向量组成的矩阵?低秩表示
传统机器学习问题
最新推荐文章于 2024-11-06 10:55:54 发布