面试经典题及答案,【第5篇(1),Python面试你必须要知道的那些知识

image53

图 3. ImageNet 的示例网络架构。 左:作为参考的 VGG-19 模型 [41](196 亿 FLOP)。 中间:具有 34 个参数层(36 亿次浮点运算)的普通网络。 右图:具有 34 个参数层(36 亿次浮点运算)的残差网络。 虚线快捷方式增加了维度。 表 1 显示了更多细节和其他变体。

值得注意的是我们的模型与VGG网络(图3左)相比,有更少的滤波器和更低的复杂度。我们的34层基准有36亿FLOP(乘加),仅是VGG-19(196亿FLOP)的18%。

残差网络。 基于上述的简单网络,我们插入快捷连接(图3,右),将网络转换为其对应的残差版本。当输入和输出具有相同的维度时(图3中的实线快捷连接)时,可以直接使用恒等快捷连接(方程(1))。当维度增加(图3中的虚线快捷连接)时,我们考虑两个选项:(A)快捷连接仍然执行恒等映射,额外填充零输入以增加维度。此选项不会引入额外的参数;(B)方程(2)中的投影快捷连接用于匹配维度(由1×1卷积完成)。对于这两个选项,当快捷连接跨越两种尺寸的特征图时,它们执行时步长为2。

3.4 实现


我们对 ImageNet 的实现遵循了 [21, 41] 中的做法。 图像被调整大小,其较短的边在 [256;480] 中随机采样以进行缩放 [41]。 224 × 224 224×224 224×224 的裁剪是从图像或其水平翻转中随机采样的,减去每个像素的平均值 [21]。使用了 [21] 中的标准颜色增强。我们在每次卷积之后和激活之前采用批量归一化(BN)[16],遵循 [16]。我们按照 [13] 中的方法初始化权重,并从头开始训练所有普通/残差网络。我们使用小批量大小为 256 的 SGD。学习率从 0.1 开始,并在误差平稳时除以 10,并且模型最多训练 60 × 104 次迭代。我们使用 0.0001 的权重衰减和 0.9 的动量。我们不使用 dropout [14],遵循 [16] 中的做法。在测试中,对于比较研究,我们采用标准的 10 作物测试 [21]。为了获得最佳结果,我们采用 [41,13] 中的完全卷积形式,并在多个尺度上平均分数(调整图像大小,使短边位于 {224;256;384;480;640})。

4 实验

===============================================================

4.1 ImageNet 分类


我们在包含 1000 个类别的 ImageNet 2012 分类数据集 [36] 上评估我们的方法。 模型在 128 万张训练图像上进行训练,并在 5 万张验证图像上进行评估。 我们还获得了测试服务器报告的 100k 测试图像的最终结果。 我们评估 top-1 和 top-5 错误率。

普通网络。 我们首先评估 18 层和 34 层的普通网络。 34层素网如图3(中)。 18层素网也是类似的形式。 有关详细架构,请参见表 1。

image-20210908092625781

表 2 中的结果表明,较深的 34 层素网比较浅的 18 层素网具有更高的验证误差。 为了揭示原因,在图 4(左)中,我们比较了他们在训练过程中的训练/验证错误。 我们观察到了退化问题——34 层普通网络在整个训练过程中具有更高的训练误差,即使 18 层普通网络的解空间是 34 层网络的子空间。

image-20210908092657076

image-20210908092717427

我们认为这种优化困难不太可能是由梯度消失引起的。 这些普通网络使用 BN [16] 进行训练,确保前向传播的信号具有非零方差。 我们还验证了反向传播的梯度表现出 BN 的健康规范。 因此,前向或后向信号都不会消失。 事实上,34层的普通网仍然能够达到有竞争力的精度(表3),这表明求解器在一定程度上是有效的。 我们推测深平原网络的收敛速度可能呈指数级低,这会影响训练误差的减少。 未来将研究这种优化困难的原因。

残差网络。 接下来我们评估 18 层和 34 层残差网络(ResNets)。 基线架构与上述普通网络相同,期望在每对 3×3 过滤器中添加一个快捷连接,如图 3(右)所示。 在第一个比较中(表 2 和图 4 右),我们对所有快捷方式使用恒等映射,对增加维度使用零填充(选项 A)。 因此,与普通对应物相比,它们没有额外的参数。

我们从表 2 和图 4 中得到了三个主要观察结果。 首先,通过残差学习逆转了情况——34 层 ResNet 比 18 层 ResNet 好(2.8%)。 更重要的是,34 层 ResNet 表现出相当低的训练误差,并且可以推广到验证数据。 这表明退化问题在此设置中得到了很好的解决,我们设法从增加的深度中获得了精度增益。

其次,与普通对应物相比,34 层 ResNet 将 top-1 错误减少了 3.5%(表 2),这是由于成功减少了训练错误(图 4 右与左)。 这种比较验证了残差学习在极深系统上的有效性。

最后,我们还注意到 18 层普通/残差网络相当准确(表 2),但 18 层 ResNet 收敛速度更快(图 4 右与左)。 当网络“不太深”(这里是 18 层)时,当前的 SGD 求解器仍然能够找到对普通网络的良好解决方案。 在这种情况下,ResNet 通过在早期提供更快的收敛来简化优化。

恒等与投影快捷方式。 我们已经证明无参数的身份快捷方式有助于训练。 接下来我们研究投影快捷方式(Eqn.(2))。 在表 3 中,我们比较了三个选项: (A) 零填充快捷方式用于增加维度,并且所有快捷方式都是无参数的(与表 2 和图 4 右图相同); (B) 投影快捷方式用于增加维度,其他快捷方式为恒等式; © 所有捷径都是投影

image-20210908094351371

表 3 显示所有三个选项都比普通选项好得多。 B 略好于 A。我们认为这是因为 A 中的零填充维度确实没有残差学习。 C 略好于 B,我们将此归因于许多(十三个)投影快捷方式引入的额外参数。 但是 A/B/C 之间的微小差异表明投影捷径对于解决退化问题并不是必不可少的。 所以我们在本文的其余部分不使用选项 C,以减少内存/时间复杂度和模型大小。 恒等的快捷方式对于不增加下面介绍的瓶颈架构的复杂性特别重要。

更深层次的瓶颈架构。 接下来,我们将描述我们用于 ImageNet 的更深层次的网络。 由于担心我们可以负担得起的训练时间,我们将构建块修改为瓶颈设计4。 对于每个残差函数 F,我们使用 3 层的堆栈而不是 2 层(图 5)。 这三层分别是 1×1、3×3 和 1×1 卷积,其中 1×1 层负责减少然后增加(恢复)维度,使 3×3 层成为输入/输出维度较小的瓶颈 . 图 5 显示了一个示例,其中两种设计具有相似的时间复杂度。

image-20210908094928364

无参数身份快捷方式对于瓶颈架构尤为重要。 如果将图 5(右)中的恒等快捷方式替换为投影,可以看出时间复杂度和模型大小都增加了一倍,因为快捷方式连接到两个高维端。 因此,恒等的快捷方式为瓶颈设计带来了更有效的模型。

50 层 ResNet:我们用这个 3 层瓶颈块替换 34 层网络中的每个 2 层块,从而产生 50 层 ResNet(表 1)。 我们使用选项 B 来增加维度。 这个模型有 38 亿次 FLOP。

101 层和 152 层 ResNet:我们通过使用更多的 3 层块构建 101 层和 152 层 ResNet(表 1)。 值得注意的是,尽管深度显着增加,但 152 层 ResNet(113 亿 FLOP)的复杂度仍然低于 VGG-16/19 网络(15.3/196 亿 FLOP)。

50/101/152 层的 ResNet 比 34 层的 ResNet 准确度高很多(表 3 和 4)。 我们没有观察到退化问题,因此可以从显着增加的深度中获得显着的精度提升。 所有评估指标都见证了深度的好处(表 3 和 4)。

image-20210908095223012

与最先进方法的比较。 在表 4 中,我们与之前最好的单模型结果进行了比较。 我们的基线 34 层 ResNets 已经达到了非常有竞争力的准确性。 我们的 152 层 ResNet 具有 4.49% 的单模型 top-5 验证错误。 这个单一模型的结果优于之前所有的集成结果(表 5)。 我们将六个不同深度的模型组合成一个整体(提交时只有两个 152 层的模型)。 这导致测试集上 3.57% 的 top-5 错误(表 5)。 此条目在 ILSVRC 2015 中获得第一名 。

在这里插入图片描述

4.2 CIFAR-10 和分析


我们对 CIFAR-10 数据集 [20] 进行了更多研究,该数据集由 10 个类别的 50k 训练图像和 10k 测试图像组成。 我们展示了在训练集上训练并在测试集上进行评估的实验。 我们的重点是极深网络的行为,而不是推动最先进的结果,因此我们有意使用如下简单的架构。

普通/残差架构遵循图 3(中/右)中的形式。 网络输入是 32×32 的图像,减去每个像素的平均值。 第一层是 3×3 卷积。 然后我们在大小为 f32 的特征图上使用 3×3 卷积的 6n 层堆栈; 16; 分别为 8g,每个特征图大小有 2n 层。 过滤器数量为f16; 32; 分别为64g。 子采样由步长为 2 的卷积执行。 网络以全局平均池化结束,一个 10 路全连接 层和 softmax。 总共有 6n+2 个堆叠的加权层。 下表总结了架构:

image-20210908130032559

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

合小白学习)

⑤ Python学习路线图(告别不入流的学习)

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-2sGIeQKx-1712609281272)]

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值