Redis实战应用——位图和HyperLogLog详解,夯实基础再前行

127.0.0.1:6379> setbit s 1 1

(integer) 0

127.0.0.1:6379> setbit s 2 1

(integer) 0

127.0.0.1:6379> setbit s 4 1

(integer) 0

127.0.0.1:6379> setbit s 9 1

(integer) 0

127.0.0.1:6379> setbit s 10 1

(integer) 0

127.0.0.1:6379> setbit s 13 1

(integer) 0

127.0.0.1:6379> setbit s 15 1

(integer) 0

127.0.0.1:6379> get s

“he”

上面这个例子可以理解为「零存整取」,同样我们还也可以「零存零取」,「整存零 取」。「零存」就是使用 setbit 对位值进行逐个设置,「整存」就是使用字符串一次性填充所有位数组,覆盖掉旧值。

零存零取

127.0.0.1:6379> setbit w 1 1

(integer) 0

127.0.0.1:6379> setbit w 2 1

(integer) 0

127.0.0.1:6379> setbit w 4 1

(integer) 0

127.0.0.1:6379> getbit w 1 # 获取某个具体位置的值 0/1

(integer) 1

127.0.0.1:6379> getbit w 2

(integer) 1

127.0.0.1:6379> getbit w 4

(integer) 1

127.0.0.1:6379> getbit w 5

(integer) 0

整存零取

127.0.0.1:6379> set w h # 整存

(integer) 0

127.0.0.1:6379> getbit w 1

(integer) 1

127.0.0.1:6379> getbit w 2

(integer) 1

127.0.0.1:6379> getbit w 4

(integer) 1

127.0.0.1:6379> getbit w 5

(integer) 0

如果对应位的字节是不可打印字符,redis-cli 会显示该字符的 16 进制形式。

127.0.0.1:6379> setbit x 0 1

(integer) 0

127.0.0.1:6379> setbit x 1 1

(integer) 0

127.0.0.1:6379> get x

“\xc0”

统计和查找

Redis 提供了位图统计指令 bitcount 和位图查找指令 bitpos,bitcount 用来统计指定位置范围内 1 的个数,bitpos 用来查找指定范围内出现的第一个 0 或 1。

比如我们可以通过 bitcount 统计用户一共签到了多少天,通过 bitpos 指令查找用户从 哪一天开始第一次签到。如果指定了范围参数[start, end],就可以统计在某个时间范围内用户 签到了多少天,用户自某天以后的哪天开始签到。

遗憾的是, start 和 end 参数是字节索引,也就是说指定的位范围必须是 8 的倍数, 而不能任意指定。这很奇怪,我表示不是很能理解 Antirez 为什么要这样设计。因为这个设 计,我们无法直接计算某个月内用户签到了多少天,而必须要将这个月所覆盖的字节内容全 部取出来 (getrange 可以取出字符串的子串) 然后在内存里进行统计,这个非常繁琐。

接下来我们简单试用一下 bitcount 指令和 bitpos 指令:

127.0.0.1:6379> set w hello

OK

127.0.0.1:6379> bitcount w

(integer) 21

127.0.0.1:6379> bitcount w 0 0 # 第一个字符中 1 的位数

(integer) 3

127.0.0.1:6379> bitcount w 0 1 # 前两个字符中 1 的位数

(integer) 7

127.0.0.1:6379> bitpos w 0 # 第一个 0 位

(integer) 0

127.0.0.1:6379> bitpos w 1 # 第一个 1 位

(integer) 1

127.0.0.1:6379> bitpos w 1 1 1 # 从第二个字符算起,第一个 1 位

(integer) 9

127.0.0.1:6379> bitpos w 1 2 2 # 从第三个字符算起,第一个 1 位

(integer) 17

魔术指令 bitfield

前文我们设置 (setbit) 和获取 (getbit) 指定位的值都是单个位的,如果要一次操作多个 位,就必须使用管道来处理。 不过 Redis 的 3.2 版本以后新增了一个功能强大的指令,有 了这条指令,不用管道也可以一次进行多个位的操作。 bitfield 有三个子指令,分别是 get/set/incrby,它们都可以对指定位片段进行读写,但是最多只能处理 64 个连续的位,如果 超过 64 位,就得使用多个子指令,bitfield 可以一次执行多个子指令。

Redis实战应用——位图和HyperLogLog详解,夯实基础再前行

127.0.0.1:6379> set w hello

OK

127.0.0.1:6379> bitfield w get u4 0 # 从第一个位开始取 4 个位,结果是无符号数 (u)

(integer) 6

127.0.0.1:6379> bitfield w get u3 2 # 从第三个位开始取 3 个位,结果是无符号数 (u)

(integer) 5

127.0.0.1:6379> bitfield w get i4 0 # 从第一个位开始取 4 个位,结果是有符号数 (i)

  1. (integer) 6

127.0.0.1:6379> bitfield w get i3 2 # 从第三个位开始取 3 个位,结果是有符号数 (i)

  1. (integer) -3

所谓有符号数是指获取的位数组中第一个位是符号位,剩下的才是值。如果第一位是 1,那就是负数。无符号数表示非负数,没有符号位,获取的位数组全部都是值。有符号数最 多可以获取 64 位,无符号数只能获取 63 位 (因为 Redis 协议中的 integer 是有符号数, 最大 64 位,不能传递 64 位无符号值)。如果超出位数限制,Redis 就会告诉你参数错误。

接下来我们一次执行多个子指令:

127.0.0.1:6379> bitfield w get u4 0 get u3 2 get i4 0 get i3 2

  1. (integer) 6

  2. (integer) 5

  3. (integer) 6

  4. (integer) -3

wow,很魔法有没有!

然后我们使用 set 子指令将第二个字符 e 改成 a,a 的 ASCII 码是 97。

127.0.0.1:6379> bitfield w set u8 8 97 # 从第 8 个位开始,将接下来的 8 个位用无符号数 97 替换

  1. (integer) 101

127.0.0.1:6379> get w

“hallo”

再看第三个子指令 incrby,它用来对指定范围的位进行自增操作。既然提到自增,就有 可能出现溢出。如果增加了正数,会出现上溢,如果增加的是负数,就会出现下溢出。Redis 默认的处理是折返。如果出现了溢出,就将溢出的符号位丢掉。如果是 8 位无符号数 255, 加 1 后就会溢出,会全部变零。如果是 8 位有符号数 127,加 1 后就会溢出变成 -128。 接下来我们实践一下这个子指令 incrby :

127.0.0.1:6379> set w hello

OK

127.0.0.1:6379> bitfield w incrby u4 2 1 # 从第三个位开始,对接下来的 4 位无符号数 +1

  1. (integer) 11

127.0.0.1:6379> bitfield w incrby u4 2 1

  1. (integer) 12

127.0.0.1:6379> bitfield w incrby u4 2 1

  1. (integer) 13

127.0.0.1:6379> bitfield w incrby u4 2 1

  1. (integer) 14

127.0.0.1:6379> bitfield w incrby u4 2 1

  1. (integer) 15

127.0.0.1:6379> bitfield w incrby u4 2 1 # 溢出折返了

  1. (integer) 0

bitfield 指令提供了溢出策略子指令 overflow,用户可以选择溢出行为,默认是折返 (wrap),还可以选择失败 (fail) 报错不执行,以及饱和截断 (sat),超过了范围就停留在最大 最小值。overflow 指令只影响接下来的第一条指令,这条指令执行完后溢出策略会变成默认 值折返 (wrap)。

接下来我们分别试试这两个策略的行为

饱和截断 SAT

127.0.0.1:6379> set w hello

OK

127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1

  1. (integer) 11

127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1

  1. (integer) 12

127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1

  1. (integer) 13

127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1

  1. (intege) 14

127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1

  1. (integer) 15

127.0.0.1:6379> bitfield w overflow sat incrby u4 2 1 # 保持最大值

  1. (integer) 15

失败不执行 FAIL

127.0.0.1:6379> set w hello

OK

127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1

  1. (integer) 11

127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1

  1. (integer) 12

127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1

  1. (integer) 13

127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1

  1. (integer) 14

127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1

  1. (integer) 15

127.0.0.1:6379> bitfield w overflow fail incrby u4 2 1 # 不执行

  1. (nil)

应用四:四两拨千斤 —— HyperLogLog

========================

在开始这一节之前,我们先思考一个常见的业务问题:如果你负责开发维护一个大型的 网站,有一天老板找产品经理要网站每个网页每天的 UV 数据,然后让你来开发这个统计模 块,你会如何实现?

如果统计 PV 那非常好办,给每个网页一个独立的 Redis 计数器就可以了,这个计数器 的 key 后缀加上当天的日期。这样来一个请求,incrby 一次,最终就可以统计出所有的 PV 数据。

但是 UV 不一样,它要去重,同一个用户一天之内的多次访问请求只能计数一次。这就 要求每一个网页请求都需要带上用户的 ID,无论是登陆用户还是未登陆用户都需要一个唯一 ID 来标识。

你也许已经想到了一个简单的方案,那就是为每一个页面一个独立的 set 集合来存储所 有当天访问过此页面的用户 ID。当一个请求过来时,我们使用 sadd 将用户 ID 塞进去就可以了。通过 scard 可以取出这个集合的大小,这个数字就是这个页面的 UV 数据。没错,这 是一个非常简单的方案。

但是,如果你的页面访问量非常大,比如一个爆款页面几千万的 UV,你需要一个很大 的 set 集合来统计,这就非常浪费空间。如果这样的页面很多,那所需要的存储空间是惊人 的。为这样一个去重功能就耗费这样多的存储空间,值得么?其实老板需要的数据又不需要太精确,105w 和 106w 这两个数字对于老板们来说并没有多大区别,So,有没有更好的解 决方案呢?

这就是本节要引入的一个解决方案,Redis 提供了 HyperLogLog 数据结构就是用来解决 这种统计问题的。HyperLogLog 提供不精确的去重计数方案,虽然不精确但是也不是非常不精确,标准误差是 0.81%,这样的精确度已经可以满足上面的 UV 统计需求了。

HyperLogLog 数据结构是 Redis 的高级数据结构,它非常有用,但是令人感到意外的是,使用过它的人非常少。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

看完美团、字节、腾讯这三家的面试问题,是不是感觉问的特别多,可能咱们又得开启面试造火箭、工作拧螺丝的模式去准备下一次的面试了。

开篇有提及我可是足足背下了1000道题目,多少还是有点用的呢,我看了下,上面这些问题大部分都能从我背的题里找到的,所以今天给大家分享一下互联网工程师必备的面试1000题

注意不论是我说的互联网面试1000题,还是后面提及的算法与数据结构、设计模式以及更多的Java学习笔记等,皆可分享给各位朋友

最新“美团+字节+腾讯”一二三面问题,挑战一下你能走到哪一面?

互联网工程师必备的面试1000题

而且从上面三家来看,算法与数据结构是必备不可少的呀,因此我建议大家可以去刷刷这本左程云大佬著作的《程序员代码面试指南 IT名企算法与数据结构题目最优解》,里面近200道真实出现过的经典代码面试题

最新“美团+字节+腾讯”一二三面问题,挑战一下你能走到哪一面?

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
上面这些问题大部分都能从我背的题里找到的,所以今天给大家分享一下互联网工程师必备的面试1000题

注意不论是我说的互联网面试1000题,还是后面提及的算法与数据结构、设计模式以及更多的Java学习笔记等,皆可分享给各位朋友

[外链图片转存中…(img-jwjfdlsV-1713377241200)]

互联网工程师必备的面试1000题

而且从上面三家来看,算法与数据结构是必备不可少的呀,因此我建议大家可以去刷刷这本左程云大佬著作的《程序员代码面试指南 IT名企算法与数据结构题目最优解》,里面近200道真实出现过的经典代码面试题

[外链图片转存中…(img-YqhnV4nw-1713377241200)]

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值