自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 python列表和numpy数组的区别

numpynumpy。

2024-10-11 11:55:57 90

原创 深度学习day7(kaggle房价预测)

为了更好地理解预处理的步骤,现在我们可以自己测试这些预处理的具体操作。此时所有数值类型的均值为0,标准差为1,为缺失值填充均值0。使用热编码(one-hot)代替它们,如下。首先生成5个样本,分别为名称和年龄。对所有样本的数值类型特征作。

2024-09-20 11:42:22 397

原创 动手学深度学习day5(softmax回归从零开始)

【代码】动手学深度学习day5(softmax回归从零开始)

2024-08-30 14:55:56 425

原创 动手学深度学习day4(图像分类数据集)

【代码】动手学深度学习day4(图像分类数据集)

2024-08-28 16:31:22 211

原创 动手学深度学习day3(线性回归)

【代码】动手学深度学习day3(线性回归)

2024-08-26 08:43:27 167

原创 动手学深度学习day2(线性代数)

【代码】动手学深度学习day2(线性代数)

2024-08-23 22:04:50 218

原创 动手学深度学习day1(第二章:数据预处理)

NaN”项代表缺失值。为了处理缺失的数据,典型的方法包括插值法和删除法,其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。

2024-08-23 15:41:57 219

原创 动手学深度学习day1(第二章:数据操作)

a和b张量的形状不同,a+b首先对其进行适当的复制,再进行求和。

2024-08-22 17:20:40 236

原创 深度学习day9(利用gpu训练)

代码:(主要加在数据、损失函数、模型三个方面)

2024-08-21 16:55:31 216

原创 深度学习day9(完整的模型训练套路)

【代码】深度学习day9(完整的模型训练套路)

2024-08-21 16:28:20 158

原创 深度学习day9(完整的模型训练套路-未加测试集)

【代码】深度学习day9(完整的模型训练套路-未加测试集)

2024-08-21 16:21:23 81

原创 深度学习day8(网络模型的保存与读取)

只保存必要的权重信息,而不需要保存整个模型结构或额外的信息(如优化器状态、训练历史等),这可以显著减少存储需求。在需要加载模型时,可以只加载必要的权重,而不需要重新下载或重新训练整个模型。:只保存和加载模型的参数(权重和偏置),而不是整个模型对象。这使得用户可以根据需要轻松地在不同的模型架构之间迁移权重,或者仅加载部分权重以进行微调(fine-tuning)。

2024-08-20 22:47:32 136

原创 深度学习day8(现有网络模型的使用以及修改)

【代码】深度学习day7(现有网络模型的使用以及修改)

2024-08-20 17:44:44 137

原创 深度学习day8(优化器)

【代码】深度学习day7(优化器)

2024-08-20 16:19:28 121

原创 深度学习day8(损失函数和反向传播)

【代码】深度学习day7(损失函数和反向传播)

2024-08-20 09:29:25 166

原创 深度学习day7(Sequential)

【代码】深度学习day7(Sequential)

2024-08-19 21:46:04 196

原创 深度学习day7(Linear)

层,也被称为全连接层(Fully Connected Layer),是神经网络中最基本的层之一。它的作用是将输入的数据(通常是一个向量)线性变换到一个新的特征空间。层处理,因此你需要通过摊平(flatten)操作将其转换为一个二维张量。摊平操作会将图像的所有像素值(即所有特征)转换为一个长向量,这样每个图像就变成了一个包含所有像素值的向量,然后这个向量可以被。层期望的输入是一个二维张量(或一维张量,但会被自动转换为二维),其形状为。是一个四维张量(Tensor),其形状通常为。转换后,这个张量的形状会是。

2024-08-19 17:44:41 171

原创 深度学习day7(None-Linear Activation)

【代码】深度学习day7(None-Linear Activation)

2024-08-19 16:02:27 202

原创 深度学习day6(nn.MaxPool)

import torchfrom torch import nnfrom torch.nn import MaxPool2d# dtype将数据全部改为浮点型input = torch.tensor([[1,2,0,3,1], [0,1,2,3,1], [1,2,1,0,0], [5,2,3,1,1], [2,1,0,1,

2024-08-19 14:45:18 143

原创 深度学习day6(nn.conv)

【代码】深度学习day6(nn.conv)

2024-08-16 16:15:50 113

原创 深度学习day6(nn.Module的使用)

一种比较清晰的调试方法:在主函数第一行设置断点,debug,然后点击单步执行我的代码。

2024-08-16 16:10:22 134

原创 深度学习day5(DataLoader的使用)

的值插入到字符串中,无需显式调用。变量的值插入到字符串。,那么结果字符串将是。

2024-08-16 11:25:46 230

原创 深度学习day5(如何使用下载数据集)

如果pycharm中下载过慢,直接复制地址,会弹到迅雷中,迅雷在下载一边到指定文件夹,再运行一遍即可自动解压数据集。

2024-08-15 15:34:29 143

原创 深度学习day4(transforms的使用)

创建具体的工具=transforms.ToTensor()使用此工具:result=tool(input)

2024-08-14 21:42:06 185

原创 深度学习day4(tensorboard的使用)

现在控制器/cmd安装好tensorboard------再在终端输入此代码。logs是文件所在的文件名称;port是换一个端口防止端口被占用。输入好这一段后同样要在终端进行操作。

2024-08-14 16:00:59 206

原创 深度学习day3

2)在pycharm中鼠标放在此函数上按 ctrl+b 或 ctrl+鼠标点击。1)jupyter notebook 中使用help()查看 或 函数名?将文件放置于此环境的文件夹下--选择引用的照片ctrl+shift+c。复制的路径中要用 \\。

2024-08-13 16:47:49 195

原创 深度学习day2

2.配置对应的虚拟环境:File->Setting->Project->Python解释器,然后选择对应的虚拟环境。5.最好把requirements.txt文件的内容当作参考,有选择性的使用。3).利用搜索引擎找原因 --包名不对,通道不对,或者其他。////////有requirement文件时又快捷安装方法。1.利用PyCharm打开项目:File->Open。1).Condainstall 包名。2).Pip install 包名。3.直接运行代码,右键->run。

2024-07-26 15:23:28 212

原创 深度学习day1(gpu和cuda的准备工作)

确定型号-根据显卡算力表确定算力(7.5)-确定CUDA Runtime(11以后的)-看自己的驱动CUDA Driver Version(查看方法:anaconda命令窗口输入nvidia-smi ///版本12.0)首先,确定自己的显卡算力。

2024-07-24 16:41:48 84

原创 深度学习day1(小土堆学习配置环境)

清华镜像https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main。北京外国语大学镜像https://mirrors.bfsu.edu.cn/anaconda/pkgs/main。阿里巴巴镜像http://mirrors.aliyun.com/anaconda/pkgs/main。用于创建环境镜像地址。

2024-07-24 16:08:46 252

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除