深度学习day7(kaggle房价预测)

为了更好地理解预处理的步骤,现在我们可以自己测试这些预处理的具体操作。

首先生成5个样本,分别为名称和年龄

dictionary = {
    'name':['China','USA','Japan','India','England'],
    'age':[1,2,None,4,5]
}


dic = pd.DataFrame(dictionary)                              #先将字典转化为pd形式
dic
nameage
0China1.0
1USA2.0
2JapanNaN
3India4.0
4England5.0

对所有样本的数值类型特征作正则分布标准化操作。

此时所有数值类型的均值为0,标准差为1,为缺失值填充均值0

numeric_dic = dic.dtypes[dic.dtypes != 'object'].index      #获取数值类型列下标
print(numeric_dic)

#数值数据进行标准正态分布
dic[numeric_dic] = dic[numeric_dic].apply(
    lambda x:(x - x.mean())/(x.std()))                      

#对所有缺失值填充均值0
dic[numeric_dic] = dic[numeric_dic].fillna(0)                                  
dic
Index(['age'], dtype='object')
nameage
0China-1.095445
1USA-0.547723
2Japan0.000000
3India0.547723
4England1.095445

对于离散值,类似于 ‘name’ 使用热编码(one-hot)代替它们,如下

dic = pd.get_dummies(dic, dummy_na=True)
dic
agename_Chinaname_Englandname_Indianame_Japanname_USAname_nan
0-1.095445100000
1-0.547723000010
20.000000000100
30.547723001000
41.095445010000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值