02-240602-Spark笔记

02-240602-Spark笔记

第 5 章 Spark 核心编程:

Spark 计算框架为了能够进行高并发和高吞吐的数据处理,封装了三大数据结构,用于

处理不同的应用场景。三大数据结构分别是:

➢ RDD : 弹性分布式数据集

➢ 累加器:分布式共享只写变量

➢ 广播变量:分布式共享只读变量

接下来我们一起看看这三大数据结构是如何在数据处理中使用的。

5.1 RDD

5.1.1 什么是 RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据 处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行 计算的集合。

img

弹性

l 存储的弹性:内存与磁盘的自动切换;

l 容错的弹性:数据丢失可以自动恢复;

l 计算的弹性:计算出错重试机制;

l 分片的弹性:可根据需要重新分片。

img

分布式:数据存储在大数据集群不同节点上

img

数据集:RDD 封装了计算逻辑,并不保存数据

img

数据抽象:RDD 是一个抽象类,需要子类具体实现

img

不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在

新的 RDD 里面封装计算逻辑

img

可分区、并行计算

RDD是不保存数据的,但是IO可以临时保存一部分数据

image-20240602164711458

5.1.2 核心属性

image-20240601211337759

➢ 分区列表

RDD 数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性。

image-20240601211358095

➢ 分区计算函数

Spark 在计算时,是使用分区函数对每一个分区进行计算

image-20240601211412101

➢ RDD 之间的依赖关系

RDD 是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个 RDD 建

立依赖关系

image-20240601211426131

➢ 分区器(可选)

当数据为 KV 类型数据时,可以通过设定分区器自定义数据的分区

image-20240601211440845

➢ 首选位置(可选)

计算数据时,可以根据计算节点的状态选择不同的节点位置进行计算

image-20240601211500438

5.1.3 执行原理

从计算的角度来讲,数据处理过程中需要计算资源(内存 & CPU)和计算模型(逻辑)。 执行时,需要将计算资源和计算模型进行协调和整合。

Spark 框架在执行时,先申请资源,然后将应用程序的数据处理逻辑分解成一个一个的 计算任务。然后将任务发到已经分配资源的计算节点上, 按照指定的计算模型进行数据计 算。最后得到计算结果。

RDD 是 Spark 框架中用于数据处理的核心模型,接下来我们看看,在 Yarn 环境中,RDD 的工作原理:

  1. 启动 Yarn 集群环境

image-20240601211549994

  1. Spark 通过申请资源创建调度节点和计算节点

image-20240601211556364

  1. Spark 框架根据需求将计算逻辑根据分区划分成不同的任务

image-20240601211606135

  1. 调度节点将任务根据计算节点状态发送到对应的计算节点进行计算

image-20240601211612424

从以上流程可以看出 RDD 在整个流程中主要用于将逻辑进行封装,并生成 Task 发送给 Executor 节点执行计算,接下来我们就一起看看 Spark 框架中RDD 是具体是如何进行数据 处理的。

5.1.4 基础编程
5.1.4.1 RDD 创建

在 Spark 中创建 RDD 的创建方式可以分为四种:

1) 从集合(内存)中创建 RDD

从集合中创建 RDD,Spark 主要提供了两个方法:parallelize 和 makeRDD

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val rdd1 = sparkContext.parallelize(
 List(1,2,3,4)
)
val rdd2 = sparkContext.makeRDD(
 List(1,2,3,4)
)
rdd1.collect().foreach(println)
rdd2.collect().foreach(println)
sparkContext.stop()

从底层代码实现来讲,makeRDD 方法其实就是 parallelize 方法

def makeRDD[T: ClassTag](
 seq: Seq[T],
 numSlices: Int = defaultParallelism): RDD[T] = withScope {
 parallelize(seq, numSlices)
}

2) 从外部存储(文件)创建 RDD

由外部存储系统的数据集创建 RDD 包括:本地的文件系统,所有 Hadoop 支持的数据集,

比如 HDFS、HBase 等。

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val fileRDD: RDD[String] = sparkContext.textFile("input")
fileRDD.collect().foreach(println)
sparkContext.stop()

3) 从其他 RDD 创建

主要是通过一个 RDD 运算完后,再产生新的 RDD。详情请参考后续章节

4) 直接创建 RDD(new)

使用 new 的方式直接构造 RDD,一般由 Spark 框架自身使用。

5.1.4.2 RDD 并行度与分区

默认情况下,Spark 可以将一个作业切分多个任务后,发送给 Executor 节点并行计算,而能 够并行计算的任务数量我们称之为并行度。这个数量可以在构建 RDD 时指定。记住,这里 的并行执行的任务数量,并不是指的切分任务的数量,不要混淆了。

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val dataRDD: RDD[Int] =
 sparkContext.makeRDD(
    List(1,2,3,4),4)
val fileRDD: RDD[String] = sparkContext.textFile(
 "input",2)
fileRDD.collect().foreach(println)
sparkContext.stop()

⚫ 读取内存数据时,数据可以按照并行度的设定进行数据的分区操作,数据分区规则的

Spark 核心源码如下:

def positions(length: Long, numSlices: Int): Iterator[(Int, Int)] = {
 (0 until numSlices).iterator.map { i =>
    val start = ((i * length) / numSlices).toInt
    val end = (((i + 1) * length) / numSlices).toInt
 (start, end)
    }
  }

⚫ 读取文件数据时,数据是按照 Hadoop 文件读取的规则进行切片分区,而切片规则和数

据读取的规则有些差异,具体 Spark 核心源码如下

public InputSplit[] getSplits(JobConf job, int numSplits)
 throws IOException {
 long totalSize = 0; // compute total size
 for (FileStatus file: files) { // check we have valid files
    if (file.isDirectory()) {
    throw new IOException("Not a file: "+ file.getPath());
    }
     totalSize += file.getLen();
 }
     long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
    long minSize = Math.max(job.getLong(org.apache.hadoop.mapreduce.lib.input.
 FileInputFormat.SPLIT_MINSIZE, 1), minSplitSize);
 
 ...
 
 for (FileStatus file: files) {
 
 ...
 
 if (isSplitable(fs, path)) {
    long blockSize = file.getBlockSize();
    long splitSize = computeSplitSize(goalSize, minSize, blockSize);
 ...
 }
 protected long computeSplitSize(long goalSize, long minSize,
                                         long blockSize) {
     return Math.max(minSize, Math.min(goalSize, blockSize));
 }
5.1.4.3 RDD转换算子

RDD 根据数据处理方式的不同将算子整体上分为 Value 类型、双 Value 类型和 Key-Value

类型

Value 类型

1) map

➢ 函数签名

def map[U: ClassTag](f: T => U): RDD[U]

➢ 函数说明

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

val dataRDD: RDD[Int] = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD1: RDD[Int] = dataRDD.map(
 num => {
      num * 2
 }
)
val dataRDD2: RDD[String] = dataRDD1.map(
 num => {
 "" + num
 }
)

❖ 小功能:从服务器日志数据 apache.log 中获取用户请求 URL 资源路径

2) mapPartitions

➢ 函数签名

def mapPartitions[U: ClassTag](

 f: Iterator[T] => Iterator[U],

 preservesPartitioning: Boolean = false): RDD[U]

➢ 函数说明

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处

理,哪怕是过滤数据。

val dataRDD1: RDD[Int] = dataRDD.mapPartitions(
 datas => {
 	datas.filter(_==2)
 	}
)

❖ 小功能:获取每个数据分区的最大值

思考一个问题:map 和 mapPartitions 的区别?

➢ 数据处理角度

Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子

是以分区为单位进行批处理操作。

➢ 功能的角度

Map 算子主要目的将数据源中的数据进行转换和改变。但是不会减少或增多数据。

MapPartitions 算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,

所以可以增加或减少数据

➢ 性能的角度

Map 算子因为类似于串行操作,所以性能比较低,而是 mapPartitions 算子类似于批处

理,所以性能较高。但是 mapPartitions 算子会长时间占用内存,那么这样会导致内存可能

不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用。使用 map 操作。

完成比完美更重要

3) mapPartitionsWithIndex

➢ 函数签名

def mapPartitionsWithIndex[U: ClassTag](

 f: (Int, Iterator[T]) => Iterator[U],

 preservesPartitioning: Boolean = false): RDD[U]

➢ 函数说明

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处

理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

val dataRDD1 = dataRDD.mapPartitionsWithIndex(
 (index, datas) => {
 datas.map(index, _)
 }
)

4) flatMap

➢ 函数签名

def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

➢ 函数说明

将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射

val dataRDD = sparkContext.makeRDD(List(
 List(1,2),List(3,4)
),1)
val dataRDD1 = dataRDD.flatMap(
 list => list
)

❖ 小功能:将 List(List(1,2),3,List(4,5))进行扁平化操作

5) glom

➢ 函数签名

def glom(): RDD[Array[T]]

➢ 函数说明

将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4
),1)
val dataRDD1:RDD[Array[Int]] = dataRDD.glom()

❖ 小功能:计算所有分区最大值求和(分区内取最大值,分区间最大值求和)

6) groupBy

➢ 函数签名

def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

➢ 函数说明

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样

的操作称之为 shuffle。极限情况下,数据可能被分在同一个分区中

一个组的数据在一个分区中,但是并不是说一个分区中只有一个组

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
val dataRDD1 = dataRDD.groupBy(
 _%2
)

❖ 小功能:将 List("Hello", "hive", "hbase", "Hadoop")根据单词首写字母进行分组。

❖ 小功能:从服务器日志数据 apache.log 中获取每个时间段访问量。

❖ 小功能:WordCount。

7) filter

➢ 函数签名

def filter(f: T => Boolean): RDD[T]

➢ 函数说明

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。

当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出

现数据倾斜。

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4
),1)
val dataRDD1 = dataRDD.filter(_%2 == 0)

❖ 小功能:从服务器日志数据 apache.log 中获取 2015 年 5 月 17 日的请求路径

8) sample

➢ 函数签名

def sample(

 withReplacement: Boolean,

 fraction: Double,

 seed: Long = Utils.random.nextLong): RDD[T]

➢ 函数说明

根据指定的规则从数据集中抽取数据

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4
),1)
// 抽取数据不放回(伯努利算法)
// 伯努利算法:又叫 0、1 分布。例如扔硬币,要么正面,要么反面。
// 具体实现:根据种子和随机算法算出一个数和第二个参数设置几率比较,小于第二个参数要,大于不
要
// 第一个参数:抽取的数据是否放回,false:不放回
// 第二个参数:抽取的几率,范围在[0,1]之间,0:全不取;1:全取;
// 第三个参数:随机数种子
val dataRDD1 = dataRDD.sample(false, 0.5)
// 抽取数据放回(泊松算法)
// 第一个参数:抽取的数据是否放回,true:放回;false:不放回
// 第二个参数:重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数
// 第三个参数:随机数种子
val dataRDD2 = dataRDD.sample(true, 2)

思考一个问题:有啥用,抽奖吗?

9) distinct

➢ 函数签名

def distinct()(implicit ord: Ordering[T] = null): RDD[T]

def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

➢ 函数说明

将数据集中重复的数据去重

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4,1,2
),1)
val dataRDD1 = dataRDD.distinct()
val dataRDD2 = dataRDD.distinct(2)

思考一个问题:如果不用该算子,你有什么办法实现数据去重?

10) coalesce

➢ 函数签名

def coalesce(numPartitions: Int, shuffle: Boolean = false,

 partitionCoalescer: Option[PartitionCoalescer] = Option.empty)

 (implicit ord: Ordering[T] = null)

 : RDD[T]

➢ 函数说明

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率

当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少

分区的个数,减小任务调度成本

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4,1,2
),6)
val dataRDD1 = dataRDD.coalesce(2)

思考一个问题:我想要扩大分区,怎么办?

11) repartition

➢ 函数签名

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

➢ 函数说明

该操作内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的

RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition

操作都可以完成,因为无论如何都会经 shuffle 过程。

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4,1,2
),2)
val dataRDD1 = dataRDD.repartition(4)

思考一个问题:coalesce 和 repartition 区别?

12)

sortBy

➢ 函数签名

def sortBy[K](

 f: (T) => K,

 ascending: Boolean = true,

 numPartitions: Int = this.partitions.length)

 (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

➢ 函数说明

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理

的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一

致。中间存在 shuffle 的过程

val dataRDD = sparkContext.makeRDD(List(
 1,2,3,4,1,2
),2)
val dataRDD1 = dataRDD.sortBy(num=>num, false, 4)
  • 23
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值