计算机视觉研究院 | Transformer王者归来!无需修改任何模块,时序预测全面领先

本文来源公众号“计算机视觉研究院”,仅用于学术分享,侵权删,干货满满。

原文链接:Transformer王者归来!无需修改任何模块,时序预测全面领先

近年来,Transformer在自然语言处理以及计算机视觉任务中取得了不断突破,成为深度学习领域的基础模型。

受此启发,众多Transformer模型变体在时间序列领域中被提出。

然而,最近越来越多的研究发现,使用简单的基于线性层搭建的预测模型,就能取得比各类魔改Transformer更好的效果。

最近,针对有关Transformer在时序预测领域有效性的质疑,清华大学软件学院机器学习实验室和蚂蚁集团学者合作发布了一篇时间序列预测工作,在Reddit等论坛上引发热烈讨论。

其中,作者提出的iTransformer,考虑多维时间序列的数据特性,未修改任何Transformer模块,而是打破常规模型结构,在复杂时序预测任务中取得了全面领先,试图解决Transformer建模时序数据的痛点。

论文地址:https://arxiv.org/abs/2310.06625

代码实现:https://github.com/thuml/Time-Series-Library

在iTransformer的加持下,Transformer完成了在时序预测任务上的全面反超。

问题背景

现实世界的时序数据往往是多维的,除了时间维之外,还包括变量维度。

每个变量可以代表不同的观测物理量,例如气象预报中使用的多个气象指标(风速,温度,湿度,气压等),也可以代表不同的观测主体,例如发电厂不同设备的每小时发电量等。

一般而言,不同的变量具有完全不同的物理含义,即使语义相同,其测量单位也可能完全不同。

以往基于Transformer的预测模型通常先将同一时刻下的多个变量嵌入到高维特征表示(Temporal Token),使用前馈网络(Feed-forward Network)编码每个时刻的特征,并使用注意力模块(Attention)学习不同时刻之间的相互关联。

然而,这

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值