学习内容
一、实验目的与要求:
1、掌握SQL单表及多表之间的查询
2、掌握统计及分组函数
二、实验内容:
1.简单查询
① 从fruits表中检索s_id为100的供货商所供货的水果名和价格
源码:
SELECT f_name, f_price FROM fruits WHERE s_id = 100;
运行测试结果截图:
② 查找名称为“apple”的水果的价格
源码:
SELECT f_price FROM fruits WHERE f_name = 'apple';
运行测试结果截图:
③ 查询价格在2.00元到10.20元之间的水果名称和价格,先按f_price降序排序,再按f_name排序。
源码:
SELECT f_name, f_price FROM fruits
WHERE f_price BETWEEN 2.00 AND 10.20
ORDER BY f_price DESC, f_name ASC;
运行测试结果截图:
④ 在fruits表中,查询f_name中包含字母‘g’的记录
源码:
SELECT * FROM fruits WHERE f_name LIKE '%g%';
运行测试结果截图:
⑤ 查询customers表中c_email不为空的记录的c_id、c_name和c_email字段值
源码:
SELECT c_id, c_name, c_email FROM customers WHERE c_email IS NOT NULL;
运行测试结果截图:
⑥ 根据s_id对fruits表中的数据进行分组,并显示水果种类大于1的分组信息,效果如下图所示(GROUP_CONCAT函数)
或
源码:
SELECT s_id, GROUP_CONCAT(f_name) AS Names
FROM fruits
GROUP BY s_id
HAVING COUNT(f_id) > 1;
运行测试结果截图:
2.多表查询
① 查询供应‘a1’的水果供应商提供的其他水果种类
源码:
SELECT DISTINCT f2.f_name
FROM fruits f1
JOIN fruits f2 ON f1.s_id = f2.s_id
WHERE f1.f_id = 'a1' AND f2.f_id <> 'a1';
运行测试结果截图:
② 在orderitems表中查询f_id为c0的订单号,并显示具有该订单号的客户c_id
源码:
SELECT DISTINCT orders.o_num, orders.c_id
FROM orders
JOIN orderitems ON orders.o_num = orderitems.o_num
WHERE orderitems.f_id = 'c0';
运行测试结果截图:
③ 查询客户c_id为10000的所有订单的总价格(客户购买水果所花费的金额),效果类似如下图所示
源码:
SELECT orders.c_id, SUM(orderitems.quantity * orderitems.item_price) AS 金额
FROM orders
JOIN orderitems ON orders.o_num = orderitems.o_num
WHERE orders.c_id = 10000
GROUP BY orders.c_id;
运行测试结果截图:
④ 查询s_city等于“Tianjin”的供应商,并显示所有该供应商提供的水果的种类,效果如下图所示
源码:
SELECT suppliers.s_id, GROUP_CONCAT(fruits.f_name) AS fruit_list
FROM suppliers
JOIN fruits ON suppliers.s_id = fruits.s_id
WHERE suppliers.s_city = 'Tianjin'
GROUP BY suppliers.s_id;
运行测试结果截图:
⑤ 查询订单为‘30005’的所有水果供货商的名称
源码:
SELECT DISTINCT suppliers.s_name
FROM suppliers
JOIN fruits ON suppliers.s_id = fruits.s_id
JOIN orderitems ON fruits.f_id = orderitems.f_id
WHERE orderitems.o_num = 30005;
运行测试结果截图:
⑥ 查询销量最多的水果名称
源码:
SELECT fruits.f_name, SUM(orderitems.quantity) AS total_sold
FROM orderitems
JOIN fruits ON orderitems.f_id = fruits.f_id
GROUP BY fruits.f_name
ORDER BY total_sold DESC
LIMIT 1;
运行测试结果截图:
⑦ 显示购买了’107’号供货商所有水果的用户信息
步骤:先向数据表orders表中插入两条记录(50010,当前时间,10000)和(50008,当前时间,10004),在orderitems表中插入五条记录(50010,1,b5,10,3.6)、(50010,2,b2,5,7.6)、(50010,3,t2,7,3.6)、(50008,1,b1,10,102)、(50008,2,b5,10,3.6);然后再做题
插入源码:
INSERT INTO orders (o_num, o_date, c_id) VALUES
(50010, NOW(), 10000),
(50008, NOW(), 10004);
INSERT INTO orderitems (o_num, o_item, f_id, quantity, item_price) VALUES
(50010, 1, 'b5', 10, 3.6),
(50010, 2, 'b2', 5, 7.6),
(50010, 3, 't2', 7, 3.6),
(50008, 1, 'b1', 10, 102),
(50008, 2, 'b5', 10, 3.6);
运行测试结果截图:
查询源码:
SELECT DISTINCT customers.*
FROM customers
JOIN orders ON customers.c_id = orders.c_id
JOIN orderitems ON orders.o_num = orderitems.o_num
JOIN fruits ON orderitems.f_id = fruits.f_id
WHERE fruits.s_id = 107
GROUP BY customers.c_id
HAVING COUNT(DISTINCT fruits.f_id) = (SELECT COUNT(DISTINCT f_id)
FROM fruits
WHERE s_id = 107);
运行测试结果截图:
运行结果为空,即没有用户买了’107’号供货商所有水果。
三、思考题
结合实际应用并分析查找给定表中结构或数据是否存在问题,如何改进?
在第7小题查询购买了’107’号供货商所有水果的用户信息时,发现输出结果为空,影响用户体验。
改进:(1)输出购买’107’号供货商部分水果的用户
代码:
SELECT DISTINCT customers.*
FROM customers
JOIN orders ON customers.c_id = orders.c_id
JOIN orderitems ON orders.o_num = orderitems.o_num
JOIN fruits ON orderitems.f_id = fruits.f_id
WHERE fruits.s_id = 107;
运行结果:
(2)手动插入数据
– 先新增一个用户
INSERT INTO customers (c_id, c_name) VALUES (10005, 'TestUser');
– 新增一个订单
INSERT INTO orders (o_num, o_date, c_id) VALUES (50011, NOW(), 10005);
– 确保 orderitems 里有 107
号供货商的所有水果
INSERT INTO orderitems (o_num, o_item, f_id, quantity, item_price) VALUES
(50011, 1, 'b5', 5, 3.60),
(50011, 2, 't4', 3, 3.60);
运行结果:
插入数据后运行查询即可输出购买了’107’号供货商所有水果的用户信息:
四、实验小结
1.实验中遇到的问题及解决过程
问题:查询购买了‘107’号供货商所有水果的用户信息时结果为空
解决方案:
方案一:修改查询条件,查询购买了‘107’号供货商部分水果的用户,以提升查询结果的可用性。
方案二:手动插入数据,确保数据库中有用户购买了‘107’号供货商的所有水果,并重新执行查询,成功获取结果。
2.实验中产生的错误及原因分析
错误现象:多表连接查询时,返回的结果不符合预期,或者返回空结果。
原因分析:连接查询时,可能 JOIN 关联字段不匹配,或存在 NULL 值,影响查询结果。
学习感受
通过本次SQL查询实验,我对数据库的查询语句有了更深入的理解和掌握。尤其是在进行多表连接查询以及分组统计函数的使用时,我切实感受到了SQL在处理复杂数据关系时的强大能力。
实验中最让我印象深刻的是最后一道题“查询购买了某供货商所有水果的用户”。在实际操作过程中,虽然查询语句逻辑严谨,但由于数据本身不满足查询条件,导致结果为空。这一过程让我意识到,仅仅会写查询语句是不够的,还需要对数据本身有清晰的认知,甚至需要主动构造数据进行验证。这种从“语法正确”到“结果合理”的过渡,是我此次实验中很宝贵的体会。
另外,像GROUP_CONCAT函数的使用也让我眼前一亮,它能将多个值合并为一个字段,对于结果展示非常友好。在以往的学习中,这种细节很容易被忽略,但在实验中使用后让我真正理解了它的作用和优势。
总的来说,这次实验不仅提升了我对SQL查询语法的掌握,更让我认识到在实际应用中如何灵活运用所学知识来解决问题。也让我体会到,数据分析不仅仅是“查出结果”,更是一个逻辑严密、需要不断验证和优化的过程。