Python-Matplotlib可视化(6)——自定义坐标轴让统计图清晰易懂

本文介绍了如何使用Python的Matplotlib库自定义坐标轴的刻度和标签,包括设置固定间隔的主次刻度、使用字符列表作为标签、通过函数生成动态标签、应用对数刻度以及控制标签的旋转,帮助创建更清晰易懂的统计图表。
摘要由CSDN通过智能技术生成

以上代码,强制水平刻度每隔5个单位步长呈现一次。此外,我们还添加了副刻度,副刻度的间隔为1个单位步长,步骤说明如下:

  1. 首先实例化一个Axes对象——用于管理图形中的坐标轴:ax=plot.Axes()

  2. 然后使用Locator实例设置x轴(ax.xaxis)或y轴(ax.yaxis)的主刻度和副刻度。

也为副刻度添加辅助网格:

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.ticker as ticker

x = np.linspace(-20, 20, 1024)

y = np.sinc(x)

ax = plt.axes()

ax.xaxis.set_major_locator(ticker.MultipleLocator(5))

ax.xaxis.set_minor_locator(ticker.MultipleLocator(1))

plt.grid(True, which=‘both’, ls=‘dashed’)

plt.plot(x, y, c = ‘m’)

plt.show()

为副刻度添加辅助网格Tips:我们已经知道,可以使用plt.grid()添加辅助网格,但此函数还有一个可选参数which,它具有三个可选值:"minor"、"major"和"both",分别用于仅显示副刻度、仅显示主刻度、主副刻度同时显示。

控制刻度标签


是时候介绍刻度标签的设置了,刻度标签是图形空间中的坐标,虽然数字刻度标签对于大多说场景来说是足够的,但是却并不总是能够满足需求。例如,我们需要显示100个公司的营收情况,这时候我们就需要横坐标刻度标签为公司名,而非数字;同样对于时间序列,我们希望横坐标刻度标签为日期…。考虑到此类需求,我们需要使用Matplotlib为此提供了的API控制刻度标签。

可以按以下步骤为任何Matplotlib图形设置刻度标签:

import numpy as np

import matplotlib.ticker as ticker

import matplotlib.pyplot as plt

name_list = (‘Apple’, ‘Orange’, ‘Banana’, ‘Pear’, ‘Mango’)

value_list = np.random.randint(0, 99, size = len(name_list))

pos_list = np.arange(len(name_list))

ax = plt.axes()

ax.xaxis.set_major_locator(ticker.FixedLocator((pos_list)))

ax.xaxis.set_major_formatter(ticker.FixedFormatter((name_list)))

plt.bar(pos_list, value_list, color = ‘c’, align = ‘center’)

plt.show()

控制刻度标签

Tips:我们首先使用ticker.Locator实例来生成刻度的位置,然后使用ticker.Formatter实例将为刻度生成标签。FixedFormatter从字符串列表中获取标签,然后用Formatter实例设置坐标轴。同时,我们还使用了FixedLocator来确保每个标签中心都正好与刻度中间对齐。

更简单的设置方式

虽然使用上述方法可以控制刻度标签,但可以看出此方法过于复杂,如果刻度标签是固定的字符列表,那么可以用以下简单的设置方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值