===============================================================
使用tree命令打印整个项目的结构
Swin-Transformer-main
├─configs#配置文件
├─data#处理数据集相关的操作
│
├─dataset #数据集结构
│ ├─test
│ ├─train
│ │ ├─cat
│ │ └─dog
│ └─val
│ ├─cat
│ └─dog
├─figures
├─models#Swin的模型文件
│
├─output#训练模型的输出
=============================================================
从https://github.com/microsoft/Swin-Transformer下载代码,然后放到本地。然后解压。
在get_started.md找到预训练模型下载路径,下载下来然后放到Swin-Transformer根目录。
构建数据集,数据集结构如下:
dataset #数据集结构
├─test
├─train
│ ├─cat
│ └─dog
└─val
├─cat
└─dog
从原数据集中取出一部分数据集放入train对应的类别中,一部分放入val对应的类别中。把原数据集中的test直接复制到test中。
_C.DATA.DATA_PATH = ‘dataset’
Dataset name
_C.DATA.DATASET = ‘imagenet’
Model name
_C.MODEL.NAME = ‘swin_tiny_patch4_window7_224’
Checkpoint to resume, could be overwritten by command line argument
_C.MODEL.RESUME =‘swin_tiny_patch4_window7_224.pth’
Number of classes, overwritten in data preparation
_C.MODEL.NUM_CLASSES = 2
对上面参数的解释:
_C.DATA.DATA_PATH :数据集路径的根目录,我定义为dataset。
_C.DATA.DATASET:数据集的类型,这里只有一种类型imagenet。
_C.MODEL.NAME:模型的名字,对应configs下面yaml的名字,会在模型输出的root目录创建对