【python】爬取杭州市二手房销售数据做数据分析【附源码】

本文介绍了一篇使用Python进行网络爬虫,抓取杭州市二手房销售数据,并进行数据分析的实践过程。详细讲解了如何导入所需库,定义获取区域名和链接、单页房源信息的函数,以及主函数中数据爬取与保存到Excel的实现。
摘要由CSDN通过智能技术生成
pip install 模块名称 -i https://mirrors.aliyun.com/pypi/simple

我大致罗列了以下几种国内镜像源:

清华大学
https://pypi.tuna.tsinghua.edu.cn/simple

阿里云
https://mirrors.aliyun.com/pypi/simple/

豆瓣
https://pypi.douban.com/simple/ 

百度云
https://mirror.baidu.com/pypi/simple/

中科大
https://pypi.mirrors.ustc.edu.cn/simple/

华为云
https://mirrors.huaweicloud.com/repository/pypi/simple/

腾讯云
https://mirrors.cloud.tencent.com/pypi/simple/

首先,我们导入了必要的库:

import requests
from lxml import etree
import json
import pandas as pd

接下来是一些请求所需的头信息和 cookies:

cookies = {
    # 这里是一些 cookie 信息
}
​
headers = {
    # 这里是一些请求头信息
}

现在,我们定义了一个函数 getAreasInfo(city),用于获取各个区域的名称和链接:

def getAreasInfo(city):
    # 发送请求,获取页面内容
    # 从页面内容中提取区域名称和链接
    return districts

然后是另一个函数 getSinglePageInfo(city, areaname, pathname),用于获取单页的二手房信息:

def getSinglePageInfo(city, areaname, pathname):
    # 发送请求,获取页面内容
    # 解析页面内容,提取所需的房屋信息
    # 将提取的信息保存到 DataFrame 中
    return df

接下来是主函数 getSalesData(city),用于获取整个城市的二手房销售数据并保存到 Excel 文件:

def getSalesData(city):
    # 获取各区域信息
    # 遍历各区域,调用 getSinglePageInfo() 函数获取数据
    # 整合数据到 DataFrame 中
    # 将 DataFrame 数据保存为 Excel 文件

最后,在 if __name__ == '__main__': 中,我们调用了 getSalesData('hz') 函数以执行爬取数据的操作。

四、完整代码:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值