为了做好运维面试路上的助攻手,特整理了上百道 【运维技术栈面试题集锦】 ,让你面试不慌心不跳,高薪offer怀里抱!
这次整理的面试题,小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。
本份面试集锦涵盖了
- 174 道运维工程师面试题
- 128道k8s面试题
- 108道shell脚本面试题
- 200道Linux面试题
- 51道docker面试题
- 35道Jenkis面试题
- 78道MongoDB面试题
- 17道ansible面试题
- 60道dubbo面试题
- 53道kafka面试
- 18道mysql面试题
- 40道nginx面试题
- 77道redis面试题
- 28道zookeeper
总计 1000+ 道面试题, 内容 又全含金量又高
- 174道运维工程师面试题
1、什么是运维?
2、在工作中,运维人员经常需要跟运营人员打交道,请问运营人员是做什么工作的?
3、现在给你三百台服务器,你怎么对他们进行管理?
4、简述raid0 raid1raid5二种工作模式的工作原理及特点
5、LVS、Nginx、HAproxy有什么区别?工作中你怎么选择?
6、Squid、Varinsh和Nginx有什么区别,工作中你怎么选择?
7、Tomcat和Resin有什么区别,工作中你怎么选择?
8、什么是中间件?什么是jdk?
9、讲述一下Tomcat8005、8009、8080三个端口的含义?
10、什么叫CDN?
11、什么叫网站灰度发布?
12、简述DNS进行域名解析的过程?
13、RabbitMQ是什么东西?
14、讲一下Keepalived的工作原理?
15、讲述一下LVS三种模式的工作过程?
16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟?
17、如何重置mysql root密码?
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
📨 数据管理专业(Data Management Professional):指那些致力于数据管理领域的各项任务(从技术层面的数据整个生命周期管理到确保数据合理使用和发挥其潜力),通过他们的工作来帮助组织实现战略目标的专家。P1
📨 数据管理专家包括:技术高手(如数据库管理员、网络管理员、开发人员)和战略业务专家(如数据管理顾问、数据战略家、首席数据官等)。P1
📨 数据管理既需技术技能也需非技术技能,由商业和IT专业人士共同负责。其主要目标是使组织能够从数据资产中获得价值。P1
📨 管理数据的目标包括:1)满足企业及其利益相关者的信息需求。2)采集、储存、保护数据和维护数据资产的完整性。3)保障数据和信息质量。4)维护利益相关者的数据隐私和保密性。5)防止数据和信息被未授权或不恰当地访问、处理和使用。6)确保数据有效地支持企业增值目标。【满足需求、数据完整性、质量、隐私与保密性、防止不当行为、服务增值目标】P2
📨 数据:构成信息的基本材料。信息:数据在特定上下文中的应用。P2
📨 数据驱动的定义:依赖事件触发和分析应用以获得有价值的见解。这要求业务领导与技术专家合作,并依据专业规则对数据进行有效管理。P3
📨 数据管理的核心原则:P4-5
📨 1 高效数据管理需领导层承担其责任。
📨 2 数据价值:A 作为一个具有独特属性的资产;B 可以用经济学术语表达。
📨 3 数据管理的需求源自业务需求:A 涉及质量管理。B 需要元数据。C 需要规划。D 应驱动IT决策。
📨 4 数据管理依赖多样技能:A 跨职能需求。B 需要组织级别的视角。C 负责多方面的需求。
📨 5 数据管理是关于生命周期的管理:A 不同数据类型具有不同的生命周期。B 需要考虑数据相关风险。
📨 低质量数据的成本包括:1)废品和返工。2)问题解决和不明显的修正流程。3)组织效能降低或生产力减少。4)内部冲突。5)员工工作满意度下降。6)客户不满。7)错失机会,包含创新障碍。8)合规性成本或罚金。9)声誉损失。P8
📨 高质量数据的益处包括:1)提升客户体验。2)增进生产力。3)减少风险。4)快速抓住商业机会。5)增加收益。6)洞察客户、产品、流程和商机,从而获得竞争优势。P8
📨 元数据是全方位提升数据管理的关键起点。P9
📨 数据生命周期的重要考虑因素:1)创建和使用是生命周期中的核心环节。2)数据质量管理应遍及生命周期全程。3)元数据质量管理也应遍及全程。4)数据管理还应保障数据安全,降低数据相关风险。5)数据管理应集中在关键数据上。P10-11
📨 数据管理所需技能包括:设计能力、高级技术技能、理解问题和解释数据的能力、语言能力、战略性思考。P12
📨 数据管理战略的构成要素:1)引人注目的数据管理愿景。2)数据管理商业案例摘要。3)指导原则、价值观和管理理念。4)数据管理的任务和长远目标。5)实现数据管理成功的建议措施。6)符合SMART原则(具体、可衡量、可执行、现实、时限明确)的短期(12至24个月)数据管理计划目标。7)数据管理角色和组织架构描述以及职责和决策权限概述。8)数据管理程序组件和初始任务。9)具体明确范围的优先工作计划。10)包含项目和行动任务的实施路线图草案。P13
📨 数据管理战略规划的成果交付物:
1 数据管理宣言:包含愿景、业务案例、目标、指导原则、成功衡量标准、关键成功因素、风险识别、运营模式等。
**2 数据管理范围说明:规划目的和目标(通常为3年期),以及负责实现这些目标的角色、组织和领导。
**3 数据管理实施路线图:明确特定计划、项目、任务分配和交付里程碑。P14
📨 战略一致性模型(SAM):它概括了数据管理的各种基本动力要素,模型核心在于数据与信息的相互作用。P15
📨 阿姆斯特丹信息模型(AIM):与战略一致性模型相似,它概括出一个中间层,关注结构(包括规划和架构)与策略。P15
DAMA 车轮图
DAMA 环境因素六边形图
知识领域语境关系图
📨 环境因素六边形图:展示了人、流程和技术之间的相互关系,是理解DMBOK语境关系图的关键。P17
📨 知识领域语境关系图:描绘了知识领域的细节,包括与人力资源、流程和技术相关的细节。数据治理通过战略、原则、政策和管理活动进行监督和制约。通过数据分类和数据评估来实现一致性。P18
📨 数据管理关注数据生命周期的主要方面:
1.创建和使用是生命周期中的关键环节。
为了做好运维面试路上的助攻手,特整理了上百道 【运维技术栈面试题集锦】 ,让你面试不慌心不跳,高薪offer怀里抱!
这次整理的面试题,小到shell、MySQL,大到K8s等云原生技术栈,不仅适合运维新人入行面试需要,还适用于想提升进阶跳槽加薪的运维朋友。
本份面试集锦涵盖了
- 174 道运维工程师面试题
- 128道k8s面试题
- 108道shell脚本面试题
- 200道Linux面试题
- 51道docker面试题
- 35道Jenkis面试题
- 78道MongoDB面试题
- 17道ansible面试题
- 60道dubbo面试题
- 53道kafka面试
- 18道mysql面试题
- 40道nginx面试题
- 77道redis面试题
- 28道zookeeper
总计 1000+ 道面试题, 内容 又全含金量又高
- 174道运维工程师面试题
1、什么是运维?
2、在工作中,运维人员经常需要跟运营人员打交道,请问运营人员是做什么工作的?
3、现在给你三百台服务器,你怎么对他们进行管理?
4、简述raid0 raid1raid5二种工作模式的工作原理及特点
5、LVS、Nginx、HAproxy有什么区别?工作中你怎么选择?
6、Squid、Varinsh和Nginx有什么区别,工作中你怎么选择?
7、Tomcat和Resin有什么区别,工作中你怎么选择?
8、什么是中间件?什么是jdk?
9、讲述一下Tomcat8005、8009、8080三个端口的含义?
10、什么叫CDN?
11、什么叫网站灰度发布?
12、简述DNS进行域名解析的过程?
13、RabbitMQ是什么东西?
14、讲一下Keepalived的工作原理?
15、讲述一下LVS三种模式的工作过程?
16、mysql的innodb如何定位锁问题,mysql如何减少主从复制延迟?
17、如何重置mysql root密码?
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!