数学:跨越众多学科的桥梁

数学:跨越众多学科的桥梁

​ 我国著名数学家华罗庚曾说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”数学是一门历史悠久的学科,它起源于人们对数量和形状的朴素探索,却成长为解读世界本质的强大工具。数学不仅是一种研究对象,也是一种思维方式,更是一种解决问题的普遍语言。在人们日常生活的各个领域中,数学都以无形的方式发挥作用,跨越学科的界限,搭建起沟通的桥梁。本文将从物理学、计算机科学这两个当今世界上最前沿的科学领域出发,探讨数学对于它们的重要作用。

1.物理学中的数学

​ 物理学,这一自然科学的核心学科,旨在探索并揭示宇宙间万物的基本规律。而数学与物理学之间的关系可谓是“水乳交融”,因为数学不仅是描述物理现象的最佳语言,更是分析物理原理的必备工具。

​ 不妨思考物理学中的经典领域——运动学,如何描述物体的运动呢?在人们比较直观和通俗的概念中,所谓运动就是位置的变化。不妨设位置 x x x 的变化为时间 t t t 的函数,即 x ( t ) x(t) x(t),表示任意 t t t 时刻物体的位置为 x ( t ) x(t) x(t)。然而仅描述这个还不够,早在几百年前,著名物理学家牛顿就认识到物体的运动是有变化的,简单来说,就是位置的变化也有快慢。于是,为了描述这种变化,他引入了速度 v v v 的概念。何为速度?本质上就是物体运动的快慢,速度越大,相同时间所移动的距离就越大,那么,速度和位置到底有何内在的关系呢?

​ 牛顿提出,速度应是物体在单位时间 Δ t \Delta t Δt 内移动的距离 Δ x \Delta x Δx,但是仔细思考,所谓的“单位时间” Δ t \Delta t Δt 终究也是一段时间,根据 v = Δ x Δ t v=\frac{\Delta x}{\Delta t} v=ΔtΔx 所计算得来的 v v v 只能说是这一段时间的运动情况,然而如果想要知道某一时刻的速度该如何做呢?在牛顿那个时代,尚未出现微积分的相关概念,而聪明的牛顿则想到一个很好的方法(其实就是后来的微分思想),他假设,若单位时间 Δ t \Delta t Δt 无限小,小到可以忽略不计,那么可以近似认为 t t t 时刻与 t + Δ t t+\Delta t t+Δt 时刻几乎是在同一时刻,通过这样的手段计算得来的 v v v 显然就无限接近于当前 t t t 时刻的瞬时速度 $ v(t)$,当时的牛顿用这样严谨的数学语言描述之:
v ( t ) = lim ⁡ Δ t → 0 Δ x Δ t = d x ( t ) d t (1) v(t)=\lim_{\Delta t \to 0}\frac{\Delta x}{\Delta t}=\frac{dx(t)}{dt}\tag1 v(t)=Δt0limΔtΔx=dtdx(t)(1)
其中,他引入了导数的概念,针对此情景来说,速度 v ( t ) v(t) v(t) 就是位置对时间的变化率,也即位置对时间的导数,反映的物理意义是物体在 t t t 时刻位置变化的快慢。

​ 除此之外,我们应当意识到,物体运动的速度也是有所变化的,仿照上述思想,牛顿又给我们带来了加速度的定义:单位时间 Δ t \Delta t Δt 内物体速度的变化量 Δ v \Delta v Δv。采用导数的思想,物体在 t t t 时刻的加速度就是速度对时间的导数,用数学语言描述之,即:
a ( t ) = lim ⁡ Δ t → 0 Δ v Δ t = d v ( t ) d t (2) a(t)=\lim_{\Delta t \to 0}\frac{\Delta v}{\Delta t}=\frac{dv(t)}{dt}\tag2 a(t)=Δt0limΔtΔv=dtdv(t)(2)
​ 牛顿用这些概念定义和公式进一步推导出了运动学中的一些经典公式,比如描述匀加速运动的方程。假设有一个物体,它的初速度是 v 0 v_0 v0,并且在一段时间内保持匀加速运动,这意味着它的加速度 a a a 是常数。根据加速度的定义: a = d v d t a=\frac{dv}{dt} a=dtdv,其速度会随着时间线性变化。所以,物体在时间 t t t 时刻的速度 v ( t ) v(t) v(t) 可以表示为:
v ( t ) = v 0 + a t (3) v(t) = v_0+at\tag3 v(t)=v0+at(3)
接着,将速度公式对时间积分,得到经过 t t t 时间后物体移动的距离 s ( t ) s(t) s(t)
s ( t ) = ∫ v ( t )   d t = ∫ ( v 0 + a t )   d t = v 0 t + 1 2 a t 2 (4) s(t)=\int v(t)\,dt=\int (v_0+at)\,dt=v_0t+\frac{1}{2}at^2\tag4 s(t)=v(t)dt=(v0+at)dt=v0t+21at2(4)
这个公式告诉我们,做匀加速运动的物体的位移不仅与初始速度 v 0 v_0 v0 和时间 t t t 成正比,还与加速度 a a a 和时间的平方成正比。可以看出,在加速度存在的情况下,物体的位移增长速度越来越快。

​ 可见,牛顿用数学语言对物体的运动问题建立了一个准确而系统的框架,借此成果,他得以描述物体如何运动,如何变速,并且通过这些框架,运动学才能够从定性的描述转向定量的预测。

​ 除运动学外,在物理学的其他领域中,也不乏诸如这样的数学运用,例如,在动力学中,对通过受力分析推导出来的简谐运动微分方程进行求解,即可得到普适的简谐运动公式,通过此,我们知晓了振动的周期性的奥秘;在电磁学中,著名的麦克斯韦方程组揭示了电场和磁场的动态变化关系,纵使这些公式看似复杂,人类却借此第一次从数学角度理解电磁波的传播,并直接促成了无线电技术的发展 ······ 正是通过数学思想的分析和数学公式的完美描述,物理界中的种种现象和原理才得以不拘泥于模糊的定性描述,而是转向经过严谨的数学推导得到统一、普适的定量的物理公式,借助这些成果,许多事物的变化轨迹将能够被精确计算出来,这便是物理学与数学交相辉映的魅力所在啊!

2.计算机科学中的数学

​ 计算机科学,这一信息技术的基础学科,致力于研究数据的处理、存储和传输等问题。它与数学的关系同样深刻且紧密。事实上,计算机科学几乎所有的基础理论和应用领域都离不开数学的支撑。从数据结构到算法设计,从凸优化到机器学习,数学在其中都扮演了不可或缺的角色。

​ 计算机科学中的经典基础——数据结构与算法,与数学可谓是密切相关。社会中人与人之间的社交网络结构描述、城市之间的交通网络图存储、文件系统的深度递归目录结构分析、数据压缩中需要的最优编码策略 ······ 这些计算机科学领域经常碰到的现实问题,离不开图与树这两种计算机科学中的经典的数据结构。而这两种数据结构的分析与设计,离不开精巧的数学思维。

G r a p h Graph Graph)是由一组顶点 V e r t e x Vertex Vertex)和一组 E d g e Edge Edge)组成的结构,记为: G ( V , E ) G(V,E) G(V,E),其中 V V V 代表顶点集合, E E E 代表边集合。当每条边都有指定的方向时,则称之为有向图,否则称为无向图。而当每条边都有一个权值时,称其为带权图,否则为不带权图。图论中为图建立了两种主要的表示方法:邻接矩阵和邻接表。而与数学关联最大的是邻接矩阵表示法。图的邻接矩阵是一个 ∣ V ∣ × ∣ V ∣ |V| \times |V| V×V 的矩阵,其中矩阵的元素表示其下标所对应的节点之间的边权值。对于无向图,邻接矩阵是对称的。图正是以这样的独特结构,才得以表示和存储复杂的关系。一般而言,图的顶点表示实体或对象,而顶点之间的边则表示对象之间的关系。比如在社交网络中,每个顶点就代表了社会中的一名成员,而顶点之间的边以及权值则可表示人与人之间的关系以及关系的疏密。图结构正是借助巧妙的数学思维,才得以将实际中的复杂关系抽象出一种直观结构,便于人们对其进行存储、分析与处理。

​ 与图相关的 T r e e Tree Tree​),则是一种特殊的图,它是一个无环且连通的图。所谓连通,指的是任意两个节点之间都有路径相连;而所谓无环,指的是图中没有回路。树最重要的特性在于其节点的意义。每棵树都有一个根节点,与它连通的部分称为它的子树,与它直接相连的节点称为它的孩子节点,而它自己也称为其孩子节点的父亲节点,其他节点也可以这样分析。当一个节点没有任何孩子节点时,称其为叶子节点,也叫外部结点;其余结点都为分支节点,也叫内部节点。树是一种层次化的数据结构,它特别适合表示具有层级关系的数据结构。在许多实际问题中,树的结构非常直观且高效。比如,在计算机的文件系统中,通常采用树状结构来组织文件和文件夹,其中,根目录是树的根节点,文件夹和文件是树的节点,同时,每个单一文件以及空文件夹都是叶子节点,而非空文件夹一定是内部节点,树结构能够高效地表示文件的层次关系,并且支持快速的文件查找和操作。和图一样,树结构也正是通过独特的数学思维方式,才能将各种层次关系表述地如此完美。

​ 除了数据结构这一计算机科学的基础领域,在计算机科学的一个当今发展迅猛的重大分支——人工智能中,数学的作用也愈加突出。人工智能中,特别是机器学习中的两大经典模型与算法:线性回归模型与梯度下降法的发明,则是与数学基础密不可分。基于最小二乘法和利用偏导数求多元函数极值的方法,线性回归模型通过预先假设自变量与因变量之间的线性关系,最小化预测值与实际值之间的误差平方和,得到欲求的未知模型参数,来寻找最佳拟合的线性方程。而基于微积分中重要概念梯度以及最优化理论,梯度下降法规定沿着目标函数的梯度方向,按照特定的步长逐步调整模型参数,使得目标函数的值逐步减小,每一次更新模型参数的过程就可以看作是在沿着目标函数最陡的下降方向前进,这个过程通过不断迭代,最终能够收敛到目标函数的最小值,从而找到最优的模型参数。线性回归模型为何能够得到最佳拟合方程?梯度下降法为何最终能够收敛到最优值?这些推导与证明离不开严谨的数学分析和推演计算。而正是借助数学这一强大的力量,才得以让这些横空出世的现代优化算法站稳脚跟、高效可靠。

​ 总的来说,计算机科学与数学相辅相成,数学不仅为计算机科学提供了扎实的理论基础,还为其灵活应用提供了可靠的手段。在未来,随着科技的不断进步,数学与计算机科学的结合将会更加深入,数学也将继续为计算机科学的创新与发展提供源源不断的动力。

3.结语

​ 无论是在物理学的奥秘探索里,还是在计算机科学的技术革新中,数学始终以其独特的方式提供着深刻的洞察角度和解决方案。从物理学中描述物体运动的经典方程,到计算机科学中数据结构与算法的精妙设计,再到人工智能中机器学习的各种优化算法,数学在不同学科中展现出无穷的魅力。它不仅是连接不同学科的桥梁,更是推动科学进步的核心力量。
时至今日,数学不仅是一个学科的语言,更是一种思维方式,它帮助我们更好地理解世界,解决实际问题。无论我们身处哪个领域,数学的力量都将引领我们走向更广阔的知识海洋。可以说,数学的应用已经超越了纯粹的学术研究,它已然成为了现代科技发展的基石,并带领人类不断开创更美好的未来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值