平静的海面培养不出优秀的水手
题目描述
平台 :洛谷
传送门 :[P1378 油滴扩展](P1378 油滴扩展 - 洛谷)
难度 :普及+/提高
在一个长方形框子里,最多有 N N N 个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界。必须等一个油滴扩展完毕才能放置下一个油滴。那么应该按照怎样的顺序在这 N N N 个点上放置油滴,才能使放置完毕后所有油滴占据的总面积最大呢?(不同的油滴不会相互融合)
注:圆的面积公式 S = π r 2 S = \pi r^2 S=πr2,其中 r r r 为圆的半径。
输入格式
第一行,一个整数 N N N。
第二行,四个整数 x , y , x ′ , y ′ x, y, x', y' x,y,x′,y′,表示长方形边框一个顶点及其对角顶点的坐标。
接下来 N N N 行,第 i i i 行两个整数 x i , y i x_i, y_i xi,yi,表示盒子内第 i i i 个点的坐标。
输出格式
一行,一个整数,长方形盒子剩余的最小空间(结果四舍五入输出)。
输入输出样例 #1
输入 #1
2
20 0 10 10
13 3
17 7
输出 #1
50
说明/提示
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 6 1 \le N \le 6 1≤N≤6,坐标范围在 [ − 1000 , 1000 ] [-1000, 1000] [−1000,1000] 内。
解题思路
- 首先我们要知道油滴放在每个点的顺序会影响答案,我们需要求出每个油滴扩展出油膜的半径r[i],然后用长方形的面积减去每个油膜的面积 S − π × r [ i ] 2 S - \pi \times r[i]^2 S−π×r[i]2 即可求出长方形盒子剩余的空间,我们只需要求油膜最大面积。
- 首先根据题中的数据范围可知 1 ≤ N ≤ 6 1 \le N \le 6 1≤N≤6,其中N的数据范围非常小,提示我们可以用爆搜来做,即枚举油膜放在点上的顺序,枚举每个点顺序的时间复杂度为O(n!),当n = 11时, n! =39,916,800,因为n足够小所以不用担心超时。
AC代码
#include <iostream>
#include <cmath>
using namespace std;
typedef pair<int, int> PII;
int n, res; // res存储长方形盒子剩余的最小空间
double r[10]; // 储存每个点油膜的半径
int x[3], y[3]; // 储存长方形的两个顶点
PII pos[10]; // 储存点的坐标
bool st[10]; //标记这个点有没有被放过油滴
double pi = 3.1415926; // pi要取精准最好精确的小数点后七位,而且不能输错,不然后果很严重
double m;
void dfs(int u)
{
if (u > n)
{
double x = 0;
for (int i = 1; i <= n; i ++)
x = x + pi * r[i] * r[i];
m = max(m, x);
return ;
}
for (int i = 1; i <= n; i ++)
{
if (!st[i])
{
// 以下内容均为求油膜的半径
r[i] = 1000000;
for (int j = 1; j <= 2; j ++) //枚举边界求到长方形边界的最短距离
{
if (r[i] > abs(x[j] - pos[i].first)) r[i] = abs(x[j] - pos[i].first);
if (r[i] > abs(y[j] - pos[i].second)) r[i] = abs(y[j] - pos[i].second);
}
for (int j = 1; j <= n; j ++)
{
if (j == i) continue; //如果是本身就跳过
if (!st[j]) continue; // 如果这个点没被放过油滴就不会影响我们的半径大小
int len1 = abs(pos[j].first - pos[i].first), len2 = abs(pos[j].second - pos[i].second);
double len = sqrt(len1 * len1 + len2 * len2);
if (r[i] > len - r[j])
{
r[i] = len - r[j];
if (len <= r[j]) r[i] = 0;
}
}
st[i] = true;
dfs(u + 1);
r[i] = 0;
st[i] = false;//恢复现场
}
}
}
int main()
{
cin >> n;
cin >> x[1] >> y[1] >> x[2] >> y[2]; // 输入顶点坐标
for (int i = 1; i <= 2; i ++) // 将点坐标处理为大于零的数
x[i] += 1000, y[i] += 1000;
res = (max(x[1], x[2]) - min(x[1], x[2])) * (max(y[1], y[2]) - min(y[1], y[2])); // 此时res存储的是长方形面积,因为此时一个点没放
for (int i = 1; i <= n; i ++)
{
int a, b;
cin >> a >> b;
pos[i] = {a + 1000, b + 1000}; // 处理为正数
}
dfs(1);
cout << (int)(res - m + 0.5);
return 0;
}