但是,添加搜索必然会导致整个程序的复杂度直线上升,特别是现在有如此多的搜索条件
综上,最好的解决方式是筛选出 重要且能完美区分的搜索条件,例如:区域+户型+朝向
上述设置的目的是:
通过条件设置之后,通过筛选 xx区 的数据,发现数据大于 3000条,则利用户型是 x居室 的进行二次筛选,如果发现仍大于 3000条,再次通过 朝x 进行三次筛选
基本上到了第三次筛选之后,数据会在 3000以内,对应的可以全部拿到。
其他筛选条件应该也能实现同样的效果,这个自己设定即可
对了,筛选条件除了每个城市的区域没法固定外,居室和朝向都是固定的
通过F12查看源码可以看到居室和朝向对应的系统定位如下:
对应的,在代码中也就可以将其进行映射:
# 户型:一室、二室、三室、四室、五室、五室+
self.rooms_number = [‘l1’, ‘l2’, ‘l3’, ‘l4’, ‘l5’, ‘l6’]
# 朝向:朝东+朝南+朝西+朝北+南北
self.orientation = [‘f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’]
再来看中间的列表部分
列表部分有 3 个信息需要注意,如下图:
分别是:小区名+区域、其他标签、价格
如果这些字段信息已经可以满足你的数据需求,那对应的爬虫只需要获取这个页面的数据,不需要分析第二个页面,相对来说比较简单
如果你需要更详细的二手房指标,例如:挂牌时间、抵押情况、产权等,以及该房子的经纬度数据,那你需要分析第二个页面
最后是下面的翻页部分
翻页部分原理比较简单,通过多次点击下一页按钮,观察新页面的 url 链接就能发现规律
例如:https://sz.lianjia.com/ershoufang/luohuqu/pg2l1/ 中的 pg2 对应的是第二页的数据
而 l1 在前面我们已经知道是一居室的意思,所以对应的翻页页面的 url 规则应该是:主页+区域+pg页码+居室
在翻页遍历的过程中只需要更改 pg页码 即可。
1.2. 再来说第二个页面
第二个页面是通过第一个页面点击跳转的,我举个例子:
通过点击图中上面的标签,会跳转到下面链接对应的新页面
链接中后面的数字编号对应的是该二手房的编码id。
第二个页面有三个部分,分别是:价格+位置、基本信息+交易信息、地图
价格+位置部分数据如下图:
从价格部分可以获取到:参考总价、单价
从所在区域可以获取到:小区名称、大区域+小区域
基本信息+交易信息数据如下图:
因为这张图上的数据比较全,所以我并没有解析上张图的其他数据
这张图上的基本属性和交易属性都可以拿下来作为房屋字段
最后是地图部分的数据:
这部分数据比较多,例如:最近的地铁站点、公交站点等
以及在地图插件中隐藏的房屋经纬度数据
因为以前的文章专门爬过地铁站点数据,所以我在这里只拿了经纬度数据
2. 流程设计
目标已经明确,总结一下上面我们需要注意的地方,大概如下:
首先,判断该城市的总数据是否超过 3000 条,若超过则需要设置筛选条件。先通过区域进行筛选,其次通过居室进行筛选,最后通过朝向进行筛选
上述筛选过程中任一过程若存在数据小于 3000条,则停止往下筛选。
其次,在确定筛选条件之后,通过解析每一页的二手房链接跳转到详情页。翻页操作只需要根据页码重新构造 url 即可
最后,对二手房详情页进行解析,保存数据到本地文件中。
为了方便对整个流程进行复现,我做了一个流程图,如下:
3. 主要代码复现
通过上面的流程图,可以完成整个爬虫的代码复现
因为涉及的代码较多,这里只贴核心代码,完整的代码可以在文末获取
首先是获取当前条件下的房屋数据个数:
def get_house_count(self):
“”"
获取当前筛选条件下的房屋数据个数
“”"
# 爬取区域起始页面的数据
response = requests.get(url=self.current_url, headers=self.headers)
# 通过 BeautifulSoup 进行页面解析
soup = BeautifulSoup(response.text, ‘html.parser’)
# 获取数据总条数
count = soup.find(‘h2’, class_=‘total fl’).find(‘span’).string.lstrip()
return soup, count
其次是主页面的设计:
判断是否超过3000,若超过则进行第二级筛选,若未超过则直接获取数据
def get_main_page(self):
# 获取当前筛选条件下数据总条数
soup, count_main = self.get_house_count()
# 如果当前当前筛选条件下的数据个数大于最大可查询个数,则设置第一次查询条件
if int(count_main) > self.page_size*self.max_pages:
# 获取当前地市的所有行政区域,当做第一个查询条件
soup_uls = soup.find(‘div’, attrs={‘data-role’: ‘ershoufang’}).div.find_all(‘a’)
self.area = self.get_area_list(soup_uls)
# 遍历行政区域,重新生成筛选条件
for area in self.area:
self.get_area_page(area)
else:
# 直接获取数据
self.get_pages(int(count_main), ‘’, ‘’, ‘’)
# 保存数据到本地
self.data_to_csv()
对应的在确定区域的条件下,继续判断并筛选居室
在确定区域和居室的条件下,继续判断并筛选朝向
在确定区域、居室和朝向的条件下,直接获取 前3000条 数据
可以看到上面的流程十分类似,对应的代码大家注意看源码就行。
如果在三级筛选下仍存在超过3000条数据,照葫芦画瓢就行
在代码执行的过程中,建议每获取到 10条 数据保存一次,避免中途程序出错而前功尽弃
对应的代码可以参考如下:
‘’‘超过10条数据,保存到本地’‘’
if len(self.data_info) >= 10:
self.data_to_csv()
在保存到本地 csv 的时候,建议采用追加的方式进行保存
也就是在 data_to_csv 函数中这样写:
def data_to_csv(self):
“”"
保存/追加数据到本地
@return:
“”"
df_data = pd.DataFrame(self.data_info)
if os.path.exists(self.save_file_path) and os.path.getsize(self.save_file_path):
# 追加写入文件
df_data.to_csv(self.save_file_path, mode=‘a’, encoding=‘utf-8’, header=False, index=False)
else:
# 写入文件,带表头
df_data.to_csv(self.save_file_path, mode=‘a’, encoding=‘utf-8’, index=False)
# 清空当前数据集
self.data_info = []
另外,考虑到大多时候需要运行好几次程序才能获取到所有数据
在每次运行程序的时候先统计已经爬到的房屋数据,跳过已经爬到的数据
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
转存中…(img-nOnVfILN-1713217370519)]
[外链图片转存中…(img-9fWjeyYM-1713217370520)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)