Python爬取20778套深圳二手房并数据分析

本文利用Python爬虫获取深圳20778套在售二手房数据,进行深度分析。数据显示,2011年至2019年间房价上涨2.36倍,南山区均价最高,300-500万总价房源占比最高,15-20年房龄房源最多,朝南房源占比最大。同时,通过数据清洗和可视化揭示了房源分布、价格与房龄、居室、朝向的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

白岩松曾说:“高房价正在毁掉无数年轻人的爱情,毁灭了年轻人的想象力。”尤其是北上广深这类一线城市,对于一般的工薪阶层,买房更是难上加难。前不久,DT财经写了一篇文章《我只有300万预算,能在上海买到什么样的房子?》,引起了网友广泛热议。有人不禁要问,那在深圳买房又得要多少预算呢?

于是,为了更加深入了解深圳房产交易市场,我用Pyhton采集了深圳在售20778套二手房数据并分析,试图从数据层面了解深圳二手房市场现状。

首先,我们用可视化图表看下分析的结果:

数据探索与可视化


深圳二手房年走势

在这里插入图片描述

首先,我们看一下深圳近年来二手房房价整体走势图。由图可知,2011年深圳二手房价位18495元/㎡,仅仅9年时间,至2019年二手房价增长至62205元/㎡,增加了2.36倍。然而深圳平均工资增加不到2倍。可见,一般的工薪阶层购房压力增加也是情理之中。

深圳二手房在售房源分布

在这里插入图片描述
深圳二手房源主要分布在龙岗区,共计12747万套。光明区和大鹏新区二手房源相对较少,分别为382套和340套。

在这里插入图片描述
从深圳在售的二手房均价来看,南山区均价最高,高达81241元/㎡,其次是福田区和罗湖区,二手房均价分别为72114元/㎡和53070元/平方米。光明区房价最低,为22893元/㎡。

深圳在售二手房房价分布

在这里插入图片描述
在深圳买一套二手房到底要花多少钱?我们分析了二手房的价位,从图中可以看到总价在300-500万内的最多,占比达到30.53%。500-800万的占比29.85%。300万以下的占比17.84%。


深圳在售二手房房龄分布

在这里插入图片描述
这些二手房的房龄都有多久了呢?由图可知,房龄在15-20年的最多,占比23.37%,其次是房龄在10-15年,占比21.51%。5年以内的仅占比17.63%。


不同居室二手房数量及均价

在这里插入图片描述
深圳二手房中,3室2厅、2室1厅和3室1厅的二手房源数量最多,5室以上的房源较少。影响二手房房价的因素很多,居室越多房价不一定就更高,由图可知,1室0厅的均价也达到了75121元/㎡。


不同朝向二手房源数量

在这里插入图片描述
深圳在售二手房中,朝南的房源占比最大,达31.72%,朝东南和西南次之,分别为26.10%和8.94%。

深圳在售二手房房源TOP10楼盘

在这里插入图片描述
由图可知,龙光玖钻在售二手房数量最多,达到150个,其次是龙光玖云著,为130个房源。


楼层数、建筑面积与房价的关系

在这里插入图片描述
通过绘制楼层与房价、建筑面积与房价回归图可知,深圳在售二手房楼层类型分布较为分散,且楼层与房价的相关性不大,建筑面积集中分布在200㎡内,且建筑面积与房价具有较强的正相关。

数据获取

本次数据来源于贝壳找房,以下为数据获取完整代码:

from fake_useragent import UserAgent
import csv
import time
import random
import requests
import traceback
from lxml import etree

def parse_page(parse):
    items = parse.xpath('//div[@class="address"]')
    try:
        for item in items:
            name = ''.join(item.xpath('./div[1]/div/a/text()')).strip()
            #print(name)
            yangshi = ''.join(item.xpath('./div[2]/text()')).strip()
            #print(yangshi)
            guanzhu = ''.join(item.xpath('./div[3]/text()')).strip(
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值