这可能是全网最好的字符串匹配算法讲解

例:

在上图中,我们试图找到模式串 T = baab,在主串 S = abcabaabcabac 中第一次出现的位置,即为红色阴影部分, T 第一次在 S 中出现的位置下标为 4 ( 字符串的首位下标是 0 ),所以返回 4。如果模式串 T 没有在主串 S 中出现,则返回 -1。

解决上面问题的算法我们称之为字符串匹配算法,今天我们来介绍三种字符串匹配算法,大家记得打卡呀,说不准面试的时候就问到啦。

BF算法(Brute Force)


这个算法很容易理解,就是我们将模式串和主串进行比较,一致时则继续比较下一字符,直到比较完整个模式串。不一致时则将模式串后移一位,重新从模式串的首位开始对比,重复刚才的步骤下面我们看下这个方法的动图解析,看完肯定一下就能搞懂啦。

通过上面的代码是不是一下就将这个算法搞懂啦,下面我们用这个算法来解决下面这个经典题目吧。

leetcdoe 28. 实现 strStr()

题目描述

给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回  -1。

示例 1:

输入: haystack = “hello”, needle = “ll” 输出: 2

示例 2:

输入: haystack = “aaaaa”, needle = “bba” 输出: -1

题目解析

其实这个题目很容易理解,但是我们需要注意的是一下几点,比如我们的模式串为 0 时,应该返回什么,我们的模式串长度大于主串长度时,应该返回什么,也是我们需要注意的地方。下面我们来看一下题目代码吧。

题目代码

我们看一下BF算法的另一种算法(显示回退),其实原理一样,就是对代码进行了一下修改,只要看完咱们的动图,这个也能够一下就能看懂,大家可以结合下面代码中的注释和动图进行理解。

BM算法(Boyer-Moore)


我们刚才说过了 BF 算法,但是 BF 算法是有缺陷的,比如我们下面这种情况

如上图所示,如果我们利用 BF 算法,遇到不匹配字符时,每次右移一位模式串,再重新从头进行匹配,我们观察一下,我们的模式串 abcdex 中每个字符都不一样,但是我们第一次进行字符串匹配时,abcde 都匹配成功,到 x 时失败,又因为模式串每位都不相同,所以我们不需要再每次右移一位,再重新比较,我们可以直接跳过某些步骤。如下图

我们可以跳过其中某些步骤,直接到下面这个步骤。那我们是依据什么原则呢?

坏字符规则

我们之前的 BF 算法是从前往后进行比较 ,BM 算法是从后往前进行比较,我们来看一下具体过程,我们还是利用上面的例子。

BM 算法是从后往前进行比较,此时我们发现比较的第一个字符就不匹配,我们将主串这个字符称之为坏字符,也就是 f ,我们发现坏字符之后,模式串 T 中查找是否含有该字符 f,我们发现并不存在 f,此时我们只需将模式串右移到坏字符的后面一位即可。如下图

那我们在模式串中找到坏字符该怎么办呢?见下图

此时我们的坏字符为 f , 我们在模式串中,查找发现含有坏字符  f ,我们则需要移动模式串 T ,将模式串中的 f 和坏字符对齐。见下图。

然后我们继续从右往左进行比较,发现 d 为坏字符,则需要将模式串中的 d 和坏字符对齐。

那么我们在来思考一下这种情况,那就是模式串中含有多个坏字符怎么办呢?

那么我们为什么要让最靠右的对应元素与坏字符匹配呢?如果上面的例子我们没有按照这条规则看下会产生什么问题。

如果没有按照我们上述规则,则会漏掉我们的真正匹配。我们的主串中是含有 babac 的,但是却没有匹配成功,所以应该遵守最靠右的对应字符与坏字符相对的规则。

我们上面一共介绍了三种移动情况,分别是下方的模式串中没有发现与坏字符对应的字符,发现一个对应字符,发现两个。这三种情况我们分别移动不同的位数,那我们是根据依据什么来决定移动位数的呢?下面我们给图中的字符加上下标。见下图

下面我们来考虑一下这种情况。

此时这种情况肯定是不行的,不往右移动,甚至还有可能左移,那么我们有没有什么办法解决这个问题呢?继续往下看吧。

好后缀规则

好后缀其实也很容易理解,我们之前说过 BM 算法是从右往左进行比较,下面我们来看下面这个例子。

这里如果我们按照坏字符进行移动是不合理的,这时我们可以使用好后缀规则,那么什么是好后缀呢?

BM 算法是从右往左进行比较,发现坏字符的时候此时 cac  已经匹配成功,在红色阴影处发现坏字符。此时已经匹配成功的  cac 则为我们的好后缀,此时我们拿它在模式串中查找,如果找到了另一个和好后缀相匹配的串,那我们就将另一个和好后缀相匹配的串 ,滑到和好后缀对齐的位置。

是不是感觉有点拗口,没关系,我们看下图,红色代表坏字符,绿色代表好后缀

上面那种情况搞懂了,但是我们思考一下下面这种情况

上面我们说到了,如果在模式串的头部没有发现好后缀,发现好后缀的子串也可以。但是为什么要强调这个头部呢?

我们下面来看一下这种情况

但是当我们在头部发现好后缀的子串时,是什么情况呢?

下面我们通过动图来看一下某一例子的具体的执行过程

说到这里,坏字符和好后缀规则就算说完了,坏字符很容易理解,我们对好后缀总结一下

1.如果模式串含有好后缀,无论是中间还是头部可以按照规则进行移动。如果好后缀在模式串中出现多次,则以最右侧的好后缀为基准。

2.如果模式串头部含有好后缀子串则可以按照规则进行移动,中间部分含有好后缀子串则不可以。

3.如果在模式串尾部就出现不匹配的情况,即不存在好后缀时,则根据坏字符进行移动,这里有挺多文章没有提到,是个需要特别注意的地方,我是在这个论文里找到答案的,感兴趣的同学可以看下。

Boyer R S,Moore J S. A fast string searching algorithm[J]. Communications of the ACM,1977,10:762-772.

之前我们刚开始说坏字符的时候,是不是有可能会出现负值的情况,即往左移动的情况,所以我们为了解决这个问题,我们可以分别计算好后缀和坏字符往后滑动的位数(好后缀存在时),然后取两个数中最大的,作为模式串往后滑动的位数。

这破图画起来是真费劲啊。下面我们来看一下算法代码,代码有点长,我都标上了注释也在网站上 AC 了,如果各位感兴趣可以看一下,不感兴趣的话,理解坏字符和好后缀规则即可。可以直接跳到 KMP 部分

我们来理解一下我们代码中用到的两个数组,因为两个规则的移动位数,只与模式串有关,与主串无关,所以我们可以提前求出每种情况的移动情况,保存到数组中。

KMP算法(Knuth-Morris-Pratt)


我们刚才讲了 BM 算法,虽然不是特别容易理解,但是如果你用心看的话肯定可以看懂的,我们再来看一个新的算法,这个算法是考研时必考的算法。实际上 BM 和 KMP 算法的本质是一样的,你理解了 BM 再来理解 KMP 那就是分分钟的事啦。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

面试是跳槽涨薪最直接有效的方式,马上金九银十来了,各位做好面试造飞机,工作拧螺丝的准备了吗?

掌握了这些知识点,面试时在候选人中又可以夺目不少,暴击9999点。机会都是留给有准备的人,只有充足的准备,才可能让自己可以在候选人中脱颖而出。

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门即可获取!
om: 33%;" />

最后

面试是跳槽涨薪最直接有效的方式,马上金九银十来了,各位做好面试造飞机,工作拧螺丝的准备了吗?

掌握了这些知识点,面试时在候选人中又可以夺目不少,暴击9999点。机会都是留给有准备的人,只有充足的准备,才可能让自己可以在候选人中脱颖而出。

[外链图片转存中…(img-TOjESG8a-1712518629819)]

[外链图片转存中…(img-HH7PlL5L-1712518629819)]

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值