一位Python大牛的BAT面试心得与经验总结OpenCV-Python实战(21,阿里P7亲自教你

def face_detection(self, image):

将图像转换为 OpenCV 格式

image_array = np.asarray(bytearray(image), dtype=np.uint8)

img_opencv = cv2.imdecode(image_array, -1)

output = []

检测人脸并构建返回值

gray = cv2.cvtColor(img_opencv, cv2.COLOR_BGR2GRAY)

faces = self.face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(25, 25))

for face in faces:

返回检测框坐标

x, y, w, h = face.tolist()

face = {“box”: [x, y, x + w, y + h]}

output.append(face)

print(face)

返回结果

return output

face_detection() 方法使用 OpenCVdetectMultiScale() 函数执行人脸检测,获得每个检测到的人脸的坐标 (x, y, w, h),并通过合适的格式对检测结果进行编码来构建返回检测框:

face = {“box”: [x, y, x + w, y + h]}

最后,我们将编码完成的人脸检测框添加到 output 数组中,将所有检测到的人脸检测框都添加到 output 数组后,将其返回:

output.append(face)

1.2 构建请求进行测试

为了使用 Web 人脸检测 API,我们可以从浏览器执行 GET 请求;同时,此 API 还支持 POST 请求。接下来,我们构建测试脚本测试此 API ,此脚本可以执行 GETPOST 请求,以了解如何与人脸 API 进行交互,更具体的讲,测试脚本将对人脸 API 发送多个请求,以获得不同的响应,并查看错误处理的工作原理。

首先使用不正确的 URL 执行 GET 请求:

request_test.py

import requests

FACE_DETECTION_REST_API_URL = “http://localhost:5000/detect”

FACE_DETECTION_REST_API_URL_WRONG = “http://localhost:5000/process”

IMAGE_PATH = “test_example.png”

URL_IMAGE = “https://imgs.mmkk.me/wmnv/img/20190625073459-5d11cea35c407.png”

提交 GET 请求

r = requests.get(FACE_DETECTION_REST_API_URL_WRONG)

查看响应

print(“status code: {}”.format(r.status_code))

print(“headers: {}”.format(r.headers))

print(“content: {}”.format(r.json()))

打印响应信息,可以看到:

status code: 404

headers: {‘Content-Type’: ‘application/json’, ‘Content-Length’: ‘51’, ‘Server’: ‘Werkzeug/1.0.1 Python/3.7.7’, ‘Date’: ‘Sat, 02 Oct 2021 01:45:19 GMT’}

content: {‘message’: ‘Route not found’, ‘status’: ‘Not found’}

状态码 404 表示客户端可以与服务器通信,但服务器找不到请求的内容。这是因为请求的 URL (http://localhost:5000/process) 不正确。

执行的第二个请求是正确的 GET 请求:

提交 GET 请求

payload = {‘url’: URL_IMAGE}

r = requests.get(FACE_DETECTION_REST_API_URL, params=payload)

查看响应

print(“status code: {}”.format(r.status_code))

print(“headers: {}”.format(r.headers))

print(“content: {}”.format(r.json()))

打印响应信息,可以看到:

status code: 200

headers: {‘Content-Type’: ‘application/json’, ‘Content-Length’: ‘52’, ‘Server’: ‘Werkzeug/1.0.1 Python/3.7.7’, ‘Date’: ‘Sat, 02 Oct 2021 01:54:31 GMT’}

content: {‘result’: [{‘box’: [233, 77, 356, 252]}], ‘status’: ‘Ok’}

状态码 200 表示请求已成功执行,还可以看到已检测到与人脸相对应的检测框坐标。

接下来执行缺少有效负载的 GET 请求:

提交 GET 请求

r = requests.get(FACE_DETECTION_REST_API_URL)

查看响应

print(“status code: {}”.format(r.status_code))

print(“headers: {}”.format(r.headers))

print(“content: {}”.format(r.json()))

打印响应信息,可以看到:

status code: 400

headers: {‘Content-Type’: ‘application/json’, ‘Content-Length’: ‘66’, ‘Server’: ‘Werkzeug/1.0.1 Python/3.7.7’, ‘Date’: ‘Sat, 02 Oct 2021 01:58:00 GMT’}

content: {‘message’: ‘Parameter url is not present’, ‘status’: ‘Bad request’}

状态代码 400 表示错误请求,这是由于其缺少 url 参数。

接下来执行的第四个请求是具有正确负载的 POST 请求:

加载图像并构建有效负载

image = open(IMAGE_PATH, “rb”).read()

payload = {“image”: image}

提交 POST 请求

r = requests.post(FACE_DETECTION_REST_API_URL, files=payload)

查看响应

print(“status code: {}”.format(r.status_code))

print(“headers: {}”.format(r.headers))

print(“content: {}”.format(r.json()))

打印响应信息,可以看到:

status code: 200

headers: {‘Content-Type’: ‘application/json’, ‘Content-Length’: ‘52’, ‘Server’: ‘Werkzeug/1.0.1 Python/3.7.7’, ‘Date’: ‘Sat, 02 Oct 2021 02:03:26 GMT’}

content: {‘result’: [{‘box’: [193, 92, 355, 292]}], ‘status’: ‘Ok’}

最后我们构造 PUT 请求:

提交 PUT 请求

r = requests.put(FACE_DETECTION_REST_API_URL, files=payload)

查看响应

print(“status code: {}”.format(r.status_code))

print(“headers: {}”.format(r.headers))

print(“content: {}”.format(r.json()))

打印响应信息,可以看到:

status code: 405

headers: {‘Content-Type’: ‘application/json’, ‘Content-Length’: ‘66’, ‘Server’: ‘Werkzeug/1.0.1 Python/3.7.7’, ‘Date’: ‘Sat, 02 Oct 2021 02:05:54 GMT’}

content: {‘message’: ‘PUT method not supported for API’, ‘status’: ‘Failure’}

这是由于我们的 API 不支持 PUT 方法,仅支持 GET 和 POST 方法,因此返回状态码 405

2. 根据获得的响应信息在客户端绘制检测框


当请求成功执行时,将检测到的人脸作为 JSON 数据返回,接下来我们将编写程序了解如何解析响应并绘制检测到的人脸:

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

、Flink)、数据仓库、Python、前端等等。

一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!

AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值