先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注Java)
正文
Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据
- Sorted Set:
Redis 有序集合和集合一样也是 string 类型元素的集合,且不允许重复的成员。不同的是每个元素都会关联一个 double 类型的分数。redis 正是通过分数来为集合中的成员进行从小到大的排序。
还有三种特殊的数据类型: 分别是 HyperLogLogs
(基数统计), Bitmaps
(位图) 和 geospatial
(地理位置)
👨💻面试官追问:分别说说各个数据类型常用的使用场景?
- String
-
缓存: 经典使用场景,把常用信息,字符串,图片或者视频等信息放到redis中,redis作为缓存层,mysql做持久化层,降低mysql的读写压力
-
计数器:redis是单线程模型,一个命令执行完才会执行下一个,同时数据可以一步落地到其他的数据源
-
session:常见方案spring session + redis实现session共享
- List
- 阻塞队列:Redis的
lpush + brpop
命令组合即可实现阻塞队列,生产者客户端是用lpush 从列表左侧插入元素,多个消费者客户端使用 brpop 命令阻塞式的“抢"列表尾部的元素,多个客户端保证了消费的负载均衡和高可用性。
- Hash
- 缓存:哈希结构相对于字符串序列化缓存信息更加直观,而且更节省空间,并且在更新操作上更加便捷,所以常常用于缓存用户信息等。
- Set
-
标签(tag):给用户添加标签,或者用户给消息添加标签,这样有同一标签或者类似标签的可以给推荐关注的事或者关注的人。
-
点赞,或点踩,收藏等:可以放到set中实现
- zset
- 排行榜:有序集合经典使用场景。例如小说,视频等网站需要对用户上传的小说视频做排行榜,榜单可以按照用户关注数,更新时间,字数等打分,做排行。
-
数据缓存功能
-
分布式锁的功能
-
支持数据持久化
-
支持事务
-
支持消息队列
- 缓存
减轻MySQL的查询压力,提升系统性能
- 排行榜
利用Redis的SortSet
(有序集合)实现
- 计算器/限速器
-
利用Redis 中原子性的自增操作,我们可以统计类似用户点赞数、用户访问数等。
-
限速器比较典型的使用场景是限制某个用户访问某个API的频率,常用的有抢购时,防止用户疯狂点击带来不必要的压力
- 好友关系
利用集合的一些命令,比如求交集、并集、差集等。可以方便解决一些共同好友、共同爱好之类的功能
- 消息队列
除了Redis自身的发布/订阅
模式,我们也可以利用List
来实现一个队列机制,比如︰到货通知、邮件发送之类的需求,不需要高可靠,但是会带来非常大的DB压力,完全可以用List 来完成异步解耦
- Session共享
Session是保存在服务器的文件中,如果是集群服务,同一个用户过来可能落在不同机器上,这就会导致用户频繁登陆。采用Redis 保存Session后,无论用户落在那台机器上都能够获取到对应的Session信息
-
完全基于内存,绝大部分请求是纯粹的内存操作,非常快速
-
数据结构简单,对数据操作也简单
-
采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗
-
使用多路I/O复用模型,非阻塞IO
Redis是个基于内存的数据库。那服务一旦宕机,内存中的数据将全部丢失。通常的解决方案是从后端数据库恢复这些数据,但后端数据库有性能瓶颈,如果是大数据量的恢复会有几个问题:
-
会对数据库带来巨大的压力
-
数据库的性能不如Redis。导致程序响应慢。
所以对Redis来说,实现数据的持久化,避免从后端数据库中恢复数据,是至关重要的。
- RDB
以快照的形式在指定的时间间隔内将内存中的数据集快照写入磁盘,可以指定时间归档数据,但不能做到实时持久化,RDB 持久化功能生成的 RDB 文件是经过压缩的二进制文件。
- AOF
以日志的形式记录服务器所处理的每一个写、删除操作(查询操作不会记录),以文本的方式记录,并在服务器启动时,通过重新执行这些命令来还原数据集。
- 混合持久化
Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。混合持久化只发生于 AOF 重写过程。使用了混合持久化,重写后的新 AOF 文件前半段是 RDB 格式的全量数据,后半段是 AOF 格式的增量数据。
-
RDB优点
-
RDB是一个紧凑压缩的二进制文件,存储效率较高
-
RDB内部存储的是redis在某个时间点的数据快照,非常适合用于数据备份,全量复制等场景
-
RDB恢复数据的速度要比AOF快很多
-
RDB缺点
-
RDB方式实时性不够,无法做到秒级的持久化
-
每次调用bgsave都需要fork子进程,fork子进程属于重量级操作,频繁执行成本较高
-
RDB文件是二进制的,没有可读性,AOF文件在了解其结构的情况下可以手动修改或者补全
-
Redis的众多版本中未进行RDB文件格式的版本统一,有可能出现各版本服务之间数据格式无法兼容现象
-
AOF优点
-
AOF 比 RDB可靠,支持秒级持久化,就算发生故障停机,也最多只会丢失一秒钟的数据
-
当 AOF文件太大时,Redis 会自动在后台进行重写。重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。当新文件重写完毕,Redis 会把新旧文件进行切换,然后开始把数据写到新文件上
-
AOF缺点
-
对于相同的数据集,AOF 文件的大小一般会比 RDB 文件大
-
RDB 存储的是压缩二进制格式记录数据命令,AOF 是通过文本日志形式记录数据命令,所以采用 AOF 数据恢复比 RDB 慢
两者对比图:
触发RDB持久化的方式有2种,分别是手动触发和自动触发。
手动触发
手动触发分别对应save
和bgsave
命令
- save命令
阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用
- bgsave命令
Redis进程执行fork
操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短
自动触发
-
redis.conf
中配置save m n
,即在m秒内有n次修改时,自动触发bgsave
生成rdb文件 -
主从复制时,从节点要从主节点进行全量复制时也会触发bgsave操作,生成当时的快照发送到从节点
-
执行
debug reload
命令重新加载redis时也会触发bgsave操作 -
默认情况下执行
shutdown
命令时,如果没有开启aof持久化,那么也会触发bgsave操作
一共有三种:
- always
每次写入操作均同步到AOF文件中,数据零误差,性能较低,不建议使用
- everysec
每秒将缓冲区中的指令同步到AOF文件中,数据准确性较高,性能较高 ,建议使用,也是默认配置。在系统突然宕机的情况下丢失1秒内的数据
- no
由操作系统控制每次同步到AOF文件的周期,整体过程不可控
随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis引入了AOF重写机制压缩文件体积。AOF文件重写是将Redis进程内的数据转化为写命令同步到新AOF文件的过程。简单说就是减少冗余指令。
👨💻面试官追问:AOF重写有什么好处?
-
降低磁盘占用量,提高磁盘利用率
-
提高持久化效率,降低持久化写时间,提高IO性能
-
降低数据恢复用时,提高数据恢复效率
👨💻面试官继续问:AOF重写有哪些规则?
-
进程内已超时的数据不再写入文件
-
忽略无效指令。重写时使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令
- 如del key1、 hdel key2、srem key3、set key4 111、set key4 222等
- 对同一数据的多条写命令合并为一条命令
-
如lpush list1 a、lpush list1 b、 lpush list1 c 可以转化为:lpush list1 a b c
-
为防止数据量过大造成客户端缓冲区溢出,对list、set、hash、zset等类型,每条指令最多写入64个元素
缓存穿透
最后
分享一些系统的面试题,大家可以拿去刷一刷,准备面试涨薪。
这些面试题相对应的技术点:
- JVM
- MySQL
- Mybatis
- MongoDB
- Redis
- Spring
- Spring boot
- Spring cloud
- Kafka
- RabbitMQ
- Nginx
- …
大类就是:
- Java基础
- 数据结构与算法
- 并发编程
- 数据库
- 设计模式
- 微服务
- 消息中间件
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
mg-zGDdfHCc-1713289866267)]
[外链图片转存中…(img-V5ev095T-1713289866267)]
[外链图片转存中…(img-4vtq0noY-1713289866268)]
[外链图片转存中…(img-KSFnmFEV-1713289866268)]
[外链图片转存中…(img-GXeIfCSL-1713289866269)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
[外链图片转存中…(img-cWs1sPLk-1713289866269)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!