前言
==
排序,查找算法种类繁多, 全部熟记不太现实,或许在二者之中各找寻一个适合自己的算法熟练使用它会更好。因此今天我分享几种常见算法供大家参考,它们分别是:**二分查找,冒泡排序与快速排序。**代码不长,背诵记忆也是一个不错的选择,我这里提供了模板。如果哪一步不明白,可以多print几下看看数据的变化,或者手写模拟过程。
目录
前言
二分查找
模板
思路
复杂度
冒泡排序
模板
思路
复杂度
快速排序
模板
简介
思路
思考
模拟图解
默认参数
复杂度
想说的话
二分查找
====
模板
–
def binary_search(nums, target):
二分查找前提是数据是要有序的
nums.sort()
左指针指向第一个元素
left = 0
右指针指向最后一个元素
right = len(nums) - 1
注意是小于等于
while left <= right:
//2表示整除2向下取整
mid = left + (right - left) // 2
if nums[mid] == target:
return mid
如果大于目标右指针往左移 这样中值会变小
elif nums[mid] > target:
right = mid - 1
小于目标左指针往右移
else:
left = mid + 1
没找到返回-1
return -1
思路
–
二分查找必须要在数据有序的条件下进行。左右指针分别位于数组左右边界,中值处于左右指针中点的位置,我们查找元素是依靠中值查找。决定中值的唯一条件就是左右指针的值。当中值与目标值不相等时,根据中值与目标值的大小判断进行移动左指针或右指针缩减范围。重复上述操作,直到找到元素或左右指针重合为止。
重合:当右指针为目标值时,左指针必须与右指针重合中值才能与目标值匹配,因此while条件必须是小于等于。
复杂度
时间复杂度:while循环的次数 -> O (log n)
空间复杂度:仅存在临时辅助变量left,right,mid -> O(1)
冒泡排序
====
模板
–
从小到大排序
def bubble_sort(nums):
重复N-1次即可完成全部排序
for i in range(1, len(nums)):
每进行一次循环都交换出一个最大的数排在后面
因为最后面的数已经排好序了,所以不用全部遍历比较
i不从0开始是防止j+1越界
for j in range(len(nums)-i):
如果前者值大于后者,那么交换他两的值
if nums[j] > nums[j+1]:
nums[j], nums[j+1] = nums[j+1], nums[j]
思路
–
每次大循环可以交换出一个最大值,进行N-1次交换即可完成排序。(如:若列表只有2个元素,那么进行2-1次交换即可完成排序。),而在小循环中,不断将前后元素相比较交换出更大的元素放在后面。小循环可以根据大循环的次数逐步缩小比较范围,因为后面元素已经排好序了,越靠后越大。
复杂度
时间复杂度:如果一开始就是正序一遍过的话复杂度是O(n),如果一开始是反序(最坏情况)复杂度是O()),综上,总体时间复杂度 -> O())
空间复杂度:仅存在临时辅助变量i,j -> O(1)
快速排序
====
模板
–
def quick_sort(nums, start, end):
递归结束条件
if start >= end:
return
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)
.png)
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)